Skip to:Content
|
Bottom
Cover image for Fracture mechanics of electromagnetic materials : nonlinear field theory and applications
Title:
Fracture mechanics of electromagnetic materials : nonlinear field theory and applications
Personal Author:
Publication Information:
London : Imperial College Press ; Singapore ; Hackensack, NJ : Distributed by World Scientific Pub., c2013.
Physical Description:
xix, 305p. : ill. ; 23cm.
ISBN:
9781848166639
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
33000000001223 TA409 C444 2013 Open Access Book Book
Searching...
Searching...
30000010239534 TA409 C444 2013 Open Access Book Book
Searching...

On Order

Summary

Summary

Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities.Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupling and dissipative effects. Mechanical, aeronautical, civil, biomedical, electrical and electronic engineers interested in application of the principles of fracture mechanics to design analysis and durability evaluation of smart structures and devices will find this book an invaluable resource.


Table of Contents

Forewordp. vii
Prefacep. ix
List of Tablesp. xvi
List of Figuresp. xvii
Chapter 1 Fundamentals of Fracture Mechanicsp. 1
1.1 Historical Perspectivep. 1
1.2 Stress Intensity Factors (SIF)p. 4
1.3 Energy Release Rate (ERR)p. 6
1.4 J-Integralp. 7
1.5 Dynamic Fracturep. 9
1.6 Viscoelastic Fracturep. 13
1.7 Essential Work of Fracture (EWF)p. 16
1.8 Configuration Force (Material Force) Methodp. 18
1.9 Cohesive Zone and Virtual Internal Bond Modelsp. 21
Chapter 2 Elements of Electrodynamics of Continuap. 26
2.1 Notationsp. 27
2.1.1 Eulerian and Lagrangian descriptionsp. 27
2.1.2 Electromagnetic fieldp. 31
2.1.3 Electromagnetic body force and couplep. 32
2.1.4 Electromagnetic stress tensor and momentum vectorp. 34
2.1.5 Electromagnetic powerp. 35
2.1.6 Poynting theoremp. 36
2.2 Maxwell Equationsp. 36
2.3 Balance Equations of Mass, Momentum, Moment of Momentum, and Energyp. 39
2.4 Constitutive Relationsp. 42
2.5 Linearized Theoryp. 44
Chapter 3 Introduction to Thermoviscoelasticityp. 55
3.1 Thermoelasticityp. 55
3.2 Viscoelasticityp. 57
3.3 Coupled Theory of Thermoviscoelasticityp. 60
3.3.1 Fundamental principles of thermodynamicsp. 60
3.3.2 Formulation based on Helmholtz free energy functionalp. 61
3.3.3 Formulation based on Gibbs free energy functionalp. 64
3.4 Thermoviscoelastic Boundary-Initial Value Problemsp. 67
Chapter 4 Overview on Fracture of Electromagnetic Materialsp. 70
4.1 Introductionp. 70
4.2 Basic Field Equationsp. 71
4.3 General Solution Proceduresp. 73
4.4 Debates on Crack-Face Boundary Conditionsp. 76
4.5 Fracture Criteriap. 78
4.5.1 Field intensity factorsp. 78
4.5.2 Path-independent integralp. 80
4.5.3 Mechanical strain energy release ratep. 83
4.5.4 Global and local energy release ratesp. 85
4.6 Experimental Observationsp. 87
4.6.1 Indentation testp. 87
4.6.2 Compact tension testp. 91
4.6.3 Bending testp. 93
4.7 Nonlinear Studiesp. 95
4.7.1 Electrostriction/magnetostrictionp. 95
4.7.2 Polarization/magnetization saturationp. 96
4.7.3 Domain switchingp. 97
4.7.4 Domain wall motionp. 100
4.8 Status and Prospectsp. 101
Chapter 5 Crack Driving Force in Electro-Thermo-Elastodynamic Fracturep. 103
5.1 Introductionp. 103
5.2 Fundamental Principles of Thermodynamicsp. 104
5.3 Energy Flux and Dynamic Contour Integralp. 106
5.4 Dynamic Energy Release Rate Serving as Crack Driving Forcep. 108
5.5 Configuration Force and Energy-Momentum Tensorp. 108
5.6 Coupled Electromechanical Jump/Boundary Conditionsp. 110
5.7 Asymptotic Near-Tip Field Solutionp. 111
5.8 Remarksp. 118
Chapter 6 Dynamic Fracture Mechanics of Magneto-Electro-Thermo-Elastic Solidsp. 120
6.1 Introductionp. 120
6.2 Thermodynamic Formulation of Fully Coupled Dynamic Frameworkp. 121
6.2.1 Field equations and jump conditionsp. 121
6.2.2 Dynamic energy release ratep. 124
6.2.3 Invariant integralp. 125
6.3 Stroh-Type Formalism for Steady-State Crack Propagation under Coupled Magneto-Electro-Mechanical Jump/Boundary Conditionsp. 128
6.3.1 Generalized plane crack problemp. 128
6.3.2 Steady-state solutionp. 129
6.3.3 Path-independent integral for steady crack growthp. 134
6.4 Magneto-Electro-Elastostatic Crack Problem as a Special Casep. 136
6.5 Summaryp. 137
Chapter 7 Dynamic Crack Propagation in Magneto-Electro-Elastic Solidsp. 139
7.1 Introductionp. 139
7.2 Shear Horizontal Surface Wavesp. 140
7.3 Transient Mode-III Crack Growth Problemp. 146
7.4 Integral Transform, Wiener-Hopf Technique, and Cagniard-de Hoop Methodp. 150
7.5 Fundamental Solutions for Traction Loading Onlyp. 159
7.6 Fundamental Solutions for Mixed Loadsp. 164
7.7 Evaluation of Dynamic Energy Release Ratep. 174
7.8 Influence of Shear Horizontal Surface Wave Speed and Crack Tip Velocityp. 176
Chapter 8 Fracture of Functionally Graded Materialsp. 179
8.1 Introductionp. 179
8.2 Formulation of Boundary-Initial Value Problemsp. 180
8.3 Basic Solution Techniquesp. 183
8.4 Fracture Characterizing Parametersp. 195
8.4.1 Field intensity factorsp. 195
8.4.2 Dynamic energy release ratep. 201
8.4.3 Path-domain independent integralp. 202
8.5 Remarksp. 204
Chapter 9 Magneto-Thermo-Viscoelastic Deformation and Fracturep. 206
9.1 Introductionp. 206
9.2 Local Balance Equations for Magnetic, Thermal, and Mechanical Field Quantitiesp. 207
9.3 Free Energy and Entropy Production Inequality for Memory-Dependent Magnetosensitive Materialsp. 209
9.4 Coupled Magneto-Thermo-Viscoelastic Constitutive Relationsp. 210
9.5 Generalized J-Integral in Nonlinear Magneto-Thermo-Viscoelastic Fracturep. 215
9.6 Generalized Plane Crack Problem and Revisit of Mode-III Fracture of a Magnetostrictive Solid in a Bias Magnetic Fieldp. 218
Chapter 10 Electro-Thermo-Viscoelastic Deformation and Fracturep. 221
10.1 Introductionp. 221
10.2 Local Balance Equations for Electric, Thermal, and Mechanical Field Quantitiesp. 222
10.3 Free Energy and Entropy Production Inequality for Memory-Dependent Electrosensitive Materialsp. 224
10.4 Coupled Electro-Thermo-Viscoelastic Constitutive Relationsp. 225
10.5 Generalized J-Integral in Nonlinear Electro-Thermo-Viscoelastic Fracturep. 231
10.6 Analogy between Nonlinear Magneto- and Electro-Thermo-Viscoelastic Constitutive and Fracture Theoriesp. 234
10.7 Reduction to Dorfmann-Ogden Nonlinear Magneto- and Electro-elasticityp. 236
Chapter 11 Nonlinear Field Theory of Fracture Mechanics for Paramagnetic and Ferromagnetic Materialsp. 237
11.1 Introductionp. 237
11.2 Global Energy Balance Equation and Non-Negative Global Dissipation Requirementp. 238
11.3 Hamiltonian Density and Thermodynamically Admissible Conditionsp. 241
11.3.1 Generalized functional thermodynamicsp. 241
11.3.2 Generalized state-variable thermodynamicsp. 243
11.4 Thermodynamically Consistent Time-Dependent Fracture Criterionp. 246
11.5 Generalized Energy Release Rate versus Bulk Dissipation Ratep. 246
11.6 Local Generalized J -Integral versus Global Generalized J -Integralp. 248
11.7 Essential Work of Fracture versus Nonessential Work of Fracturep. 250
Chapter 12 Nonlinear Field Theory of Fracture Mechanics for Piezoelectric and Ferroelectric Materialsp. 252
12.1 Introductionp. 252
12.2 Nonlinear Field Equationsp. 253
12.2.1 Balance equationsp. 253
12.2.2 Constitutive lawsp. 255
12.3 Thermodynamically Consistent Time-Dependent Fracture Criterionp. 256
12.4 Correlation with Conventional Fracture Mechanics Approachesp. 258
Chapter 13 Applications to Fracture Characterizationp. 264
13.1 Introductionp. 264
13.2 Energy Release Rate Method and its Generalizationp. 264
13.3 J-R Curve Method and its Generalizationp. 268
13.4 Essential Work of Fracture Method and its Extensionp. 271
13.5 Closurep. 273
Bibliographyp. 276
Indexp. 299
Go to:Top of Page