Skip to:Content
|
Bottom
Cover image for Machine tools for high performance machining
Title:
Machine tools for high performance machining
Publication Information:
Berlin : Springer, 2009
Physical Description:
xxii, 442 p. : ill. ; 25 cm.
ISBN:
9781848003798
Subject Term:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010193990 TJ1185 M32 2009 Open Access Book Book
Searching...
Searching...
30000010193345 TJ1185 M32 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

Machine tools are the main production factor for many industrial applications in many important sectors. Recent developments in new motion devices and numerical control have lead to considerable technological improvements in machine tools. The use of five-axis machining centers has also spread, resulting in reductions in set-up and lead times. As a consequence, feed rates, cutting speed and chip section increased, whilst accuracy and precision have improved as well. Additionally, new cutting tools have been developed, combining tough substrates, optimal geometries and wear resistant coatings. "Machine Tools for High Performance Machining" describes in depth several aspects of machine structures, machine elements and control, and application. The basics, models and functions of each aspect are explained by experts from both academia and industry. Postgraduates, researchers and end users will all find this book an essential reference.


Author Notes

L. N. López de Lacalle is a full professor in the Department of Mechanical Engineering at the Universidad del País Vasco, Bilbao, Spain.

A. Lamikiz also works in the Department of Mechanical Engineering at the Universidad del País Vasco, Bilbao, Spain.


Table of Contents

L. Norberto López de Lacalle and A. LamikizJ. Zulaika and F. J.CampaG. Quintana and J.de Ciurana and F. J.CampaA. Olarra and I. Ruiz de Argandoña and L. UriarteJ. Ramon Alique and R. HaberA. Lamikiz and L. N.Lopez de Lacalle and A. CelayaR. Lizarralde and A. Azkarate and O. ZelaietaR. Lizarralde and J. A.Marañon and A. Mendikute and H. UrretaJ. A. Sánchez and N. OrtegaO. Altuzarra and A. Hernández and Y. San Martin and J. LarranagaL. Uriarte and J. Eguia and F. EganaJ. Fernandez and M. ArizmendiCiro A. Rodriguez and Horacio Ahuett
Contributorsp. xix
1 Machine Tools for Removal Processes: A General Viewp. 1
1.1 Basic Definitions and Historyp. 1
1.1.1 Historical Remarksp. 2
1.2 The Functions and Requirements of a Machine Toolp. 8
1.2.1 User and Technological Requirementsp. 9
1.3 The Basic Mechanismp. 13
1.4 The Machine Structurep. 16
1.4.1 Machine Foundationsp. 18
1.4.2 Structural Components Materialsp. 18
1.4.3 Structural Analysisp. 19
1.4.4 Modularityp. 22
1.5 Guidewaysp. 23
1.5.1 Guides with Limit Lubricationp. 25
1.5.2 Rolling Guidesp. 25
1.5.3 Hydrostatic Guidesp. 26
1.6 The Definition of the Main Motionp. 27
1.7 The Definition of the Drive Trainsp. 29
1.8 The CNC Implementationp. 30
1.9 Machine Verificationp. 33
1.10 Typical Machines for Several Applications and Sectorsp. 34
1.10.1 A Machine for Big Structural Turbine Partsp. 34
1.10.2 A Horizontal Milling Centre for Automotive Componentsp. 35
1.10.3 A Milling Centre for Mouldsp. 37
1.10.4 A Milling Machine for Big Dies and Mouldsp. 37
1.10.5 Conventional Machines for Auxiliary Operationsp. 38
1.10.6 CNC Milling Machines for General Productionp. 40
1.10.7 A Heavy-duty Lathep. 40
1.10.8 A Mitre Band Sawp. 41
1.10.9 Transfer Machinesp. 42
1.10.10 A Milling and Boring Centrep. 43
1.11 The Book Organisationp. 43
Referencesp. 44
2 New Concepts for Structural Componentsp. 47
2.1 Introduction and Definitionsp. 47
2.2 Optimised Machine Structuresp. 49
2.2.1 A Comparison Among Different Machine Configurationsp. 50
2.2.2 Structural Components in Machine Structuresp. 53
2.2.3 Robust Rams and Columnsp. 54
2.3 Structural Optimisation in Machinesp. 56
2.3.1 Mechanical Requirements for Eco-efficient Machinesp. 56
2.3.2 FEM Modellingp. 58
2.3.3 Topological Optimisationp. 60
2.4 Structural Materialsp. 61
2.4.1 Involved Parametersp. 61
2.4.2 Conventional Materials for Structural Componentsp. 62
2.4.3 Innovative Materials for Structural Componentsp. 63
2.4.4 Costs of Design Materials and Structuresp. 65
2.4.5 The Influence of Innovative Materials on Productivityp. 65
2.5 Active Damping Devicesp. 66
2.5.1 The Implementation of ADDs to Machine Structuresp. 67
2.6 The Influence of New Structural Concepts on Productivityp. 68
2.6.1 The Influence of New Design Concepts for Structural Componentsp. 68
2.6.2 The Influence of ADDs on Productivityp. 71
2.7 Future Trends in Structural Components for Machinesp. 72
Referencesp. 72
3 Machine Tool Spindlesp. 75
3.1 Introductionp. 75
3.2 Types of Spindlesp. 78
3.2.1 Belt-driven Spindlesp. 78
3.2.2 Gear-driven Spindlesp. 79
3.2.3 Direct Drive Spindlesp. 79
3.2.4 Integrated (Built-in) Drive Spindlesp. 80
3.3 Spindle Configurationsp. 80
3.3.1 Common Configurations: Vertical and Horizontal Spindlesp. 81
3.3.2 Machines with Rotary Headstocksp. 81
3.3.3 A Main Spindle with an Auxiliary Spindlep. 82
3.3.4 Twin Spindles and Multi-spindlesp. 83
3.3.5 Automatic Head Exchangep. 83
3.4 Basic Elements of the Spindlep. 84
3.4.1 Motorsp. 85
3.4.2 Bearingsp. 87
3.4.3 The Toolholderp. 95
3.4.4 The Drawbarp. 102
3.4.5 The Shaftp. 103
3.4.6 The Sensorsp. 103
3.4.7 The Housingp. 104
3.5 Spindle Properties and Performancep. 105
3.5.1 Spindle Power and Torque versus Spindle Speed Curvesp. 105
3.5.2 The Stiffnessp. 106
3.5.3 Dynamic Behaviour and Vibrationsp. 108
3.5.4 The Thermal Behaviourp. 115
3.5.5 Spindles in Use: Other Problemsp. 119
3.6 Spindle Selectionp. 120
3.6.1 Conventional Machining or HSMp. 121
3.6.2 Tool Selectionp. 122
3.6.3 The Workpiece Materialp. 123
3.6.4 Power and Spindle Speed Requirementsp. 123
3.7 Brief Conclusionsp. 125
Referencesp. 126
4 New Developments in Drives and Tablesp. 129
4.1 Introductionp. 129
4.1.1 Precision and Dynamicsp. 130
4.2 Linear Drives by Ball Screwsp. 132
4.2.1 Dimensioningp. 132
4.2.2 The Rotary Screwp. 138
4.2.3 Other Configurationsp. 138
4.3 Linear Drives by Rack and Pinionp. 139
4.3.1 The Elimination of the Gapp. 139
4.3.2 Dimensioningp. 141
4.3.3 Dynamic Models of the Drivesp. 142
4.4 Linear Drives by Linear Motorsp. 142
4.4.1 Mountingp. 144
4.4.2 Configurationsp. 144
4.5 Rotary Drivesp. 145
4.5.1 Mechanical Transmissionsp. 145
4.5.2 Direct Rotary Drivesp. 146
4.6 Guidance Systemsp. 147
4.6.1 Friction Guidesp. 147
4.6.2 Rolling Guidesp. 150
4.6.3 Hydrostatic Guidesp. 152
4.6.4 Aerostatic Guidesp. 156
4.7 The Present and the Futurep. 157
4.7.1 Rolling Guides with Integrated Functionsp. 157
4.7.2 The Hydrostatic Shoe on Guide Railsp. 157
4.7.3 Guiding and Actuation through Magnetic Levitationp. 158
Referencesp. 158
5 Advanced Controls for New Machining Processesp. 159
5.1 Introduction and Historyp. 159
5.1.1 Computer Numerical Control and Direct Numerical Controlp. 160
5.1.2 Networked Control and Supervisionp. 163
5.2 New Machining Processesp. 164
5.2.1 High Speed Machiningp. 165
5.2.2 Micromechanical Machiningp. 166
5.2.3 An Introduction to Nanomachining Processesp. 167
5.3 Today's CNCs: Machine Level Controlp. 168
5.3.1 The Interpolation Processp. 169
5.3.2 The Position Control Servomechanismp. 174
5.4 Advanced CNCs: Multi-level Hierarchical Controlp. 179
5.4.1 The Control of the Machining Processp. 181
5.4.2 The Supervisory Control of the Machining Process: Merit Variablesp. 183
5.5 The Sensory System for Machining Processesp. 185
5.5.1 Correct Monitoring Conditionsp. 188
5.5.2 Machining Characteristics and their Measurementp. 189
5.5.3 Two Case Studiesp. 190
5.6 Open-Architecture CNC Systemsp. 194
5.6.1 Networked Control and Supervisionp. 195
5.7 Programming Support Systems: Manual Programmingp. 202
5.7.1 Computer Assisted Programmingp. 207
5.7.2 Graphical Simulationp. 209
5.8 Current CNC Architecturesp. 210
5.8.1 Systems Based on Multi-microprocessor Architecturep. 211
5.8.2 The PC Front-endp. 211
5.8.3 The Motion Control Card with a PCp. 212
5.8.4 The Software-based Solutionp. 212
5.8.5 Fully Digital Architectures: Towards the Intelligent Machine Toolp. 214
Referencesp. 216
6 Machine Tool Performance and Precisionp. 219
6.1 Introduction and Definitionsp. 220
6.1.1 An Introduction to Precision Machiningp. 220
6.1.2 Basic Definitions: Accuracy, Repeatability and Resolutionp. 223
6.1.3 Historical Remarks and the State of the Artp. 224
6.2 Basic Design Principles and an Error Budgetp. 225
6.2.1 Sources of Errors in Machine Toolsp. 226
6.2.2 Error Budget Estimationp. 227
6.2.3 Basic Principles for Precision Machine Designp. 231
6.2.4 Error Propagationp. 237
6.2.5 Thermal Errorsp. 240
6.2.6 CNC Interpolation Errorsp. 244
6.3 Errors Originated by the Machining Processp. 245
6.3.1 Errors Originated in the CNC Program Generationp. 245
6.3.2 Errors Originated by the Tool Wearp. 247
6.3.3 Tool Deflection Errorp. 248
6.4 Verification Proceduresp. 251
6.4.1 Standard Procedures for Machine Tool Validationp. 252
6.4.2 Test Partsp. 257
6.5 A Brief Conclusionp. 258
Referencesp. 259
7 New Developments in Lathes and Turning Centresp. 261
7.1 Introductionp. 261
7.2 Machine Configurationp. 262
7.2.1 High Production Lathesp. 262
7.2.2 Turning Centres: Multi-tasking Machinesp. 265
7.3 The Latest Technologies Applied to Lathes and Turning Centresp. 270
7.3.1 General Configuration Technologiesp. 270
7.3.2 Complementary Technologies to Improve Machine Performancep. 271
7.4 Special Machining Processes Applied in Multi-tasking Machinesp. 272
7.4.1 The Laser Applicationp. 272
7.4.2 Roller Burnishing and Deep Rollingp. 273
7.4.3 Ultrasonic Assisted Turningp. 275
7.4.4 Cryogenic Gas Assisted Turningp. 276
7.4.5 High-pressure Coolant Assisted Machiningp. 277
Referencesp. 278
8 High Performance Grinding Machinesp. 279
8.1 Introductionp. 279
8.2 The Machine Configurationp. 280
8.2.1 The Machine Architecturep. 281
8.2.2 Materials Applied in Structural Partsp. 286
8.2.3 Main Componentsp. 288
8.2.4 Wheel Dressing Systemsp. 291
8.2.5 Process Lubrication and Coolingp. 296
8.2.6 Integrated Measuring Devicesp. 297
8.3 Special Grinding Processesp. 299
8.3.1 Peel Grinding Quick Pointp. 299
8.3.2 Speed Stroke Grindingp. 300
8.3.3 Creep Feed Grindingp. 301
8.3.4 High Efficiency Deep Grindingp. 302
8.4 Machine and Process Monitoring and Controlp. 302
8.4.1 Monitored Parameters and Applied Sensorsp. 303
8.4.2 Control Strategiesp. 304
Referencesp. 305
9 Wire Electrical Discharge Machinesp. 307
9.1 Introductionp. 307
9.2 The WEDM Processp. 310
9.2.1 Accuracy and Speedp. 312
9.3 WEDM Machinesp. 315
9.3.1 Wire Transport and Wire Thread Devicesp. 318
9.3.2 Machine Automationp. 319
9.3.3 Workpiece Fixturing Systemsp. 321
9.3.4 Filtering Systemsp. 322
9.4 Wires for WEDMp. 323
9.5 The Wire EDM of Advanced Materialsp. 326
9.5.1 Aeronautical Alloysp. 326
9.5.2 Tungsten Carbidep. 327
9.5.3 Advanced Ceramics and PCDp. 328
9.6 Thin-wire EDMp. 330
Referencesp. 332
10 Parallel Kinematics for Machine Toolsp. 335
10.1 Introductionp. 335
10.2 Main Characteristics of the Parallel Kinematic Machinesp. 337
10.3 A Classification of the Parallel Kinematic Machinesp. 338
10.4 A Design Methodology for Parallel Kinematic Machinesp. 339
10.4.1 The Motion Patternp. 340
10.4.2 The Type Synthesisp. 341
10.4.3 The Position Analysisp. 345
10.4.4 Velocity Analysis, Singularities and Dynamicsp. 347
10.4.5 The Optimisationp. 349
10.5 The Kinematic Calibration of PKMsp. 349
10.5.1 A Mathematical Approachp. 351
10.5.2 Measuring on External Methodsp. 353
10.5.3 Self-calibration Strategiesp. 358
10.6 The Control of Parallel Kinematic Machinesp. 358
10.6.1 Models Specific to Parallel Kinematics Machinesp. 360
10.6.2 The Dynamic Controllerp. 361
10.6.3 The Model-based Predictive Controllerp. 363
10.7 Conclusions and Future Trendsp. 365
Referencesp. 366
11 Micromilling Machinesp. 369
11.1 Introduction and Definitionsp. 369
11.2 The Micromilling Processp. 371
11.2.1 Micromilling Toolsp. 372
11.2.2 Applicationsp. 374
11.3 Miniaturised Machine Toolsp. 376
11.4 Machine Drivesp. 377
11.4.1 Conventional Ball Screw Configurationp. 377
11.4.2 Friction Drivesp. 379
11.4.3 The Linear Motorp. 380
11.4.4 New Tendencies: Hydrostatic Screwsp. 382
11.5 Guidewaysp. 383
11.5.1 Special Rolling Guides Configurationsp. 383
11.5.2 Aerostatic and Hydrostatic Guidesp. 384
11.5.3 New Tendencies: Magnetic and Flexure Guidance Systemsp. 386
11.6 The High Speed Spindle and Colletp. 389
11.6.1 Alternatives: Hydrostatic and Magnetic Spindlesp. 390
11.7 Measuring Systemsp. 392
11.8 Examplesp. 393
11.8.1 The Kern® Pyramid Nanop. 393
11.8.2 The Kugler® Microgantry nano 3/5Xp. 395
Referencesp. 396
12 Machines for the Aeronautical Industryp. 399
12.1 Aeronautical Businessp. 399
12.2 Aerospace Componentsp. 400
12.2.1 Aerospace Structuresp. 401
12.2.2 Aerospace Enginesp. 402
12.2.3 Accessoriesp. 403
12.3 Aerospace Materialsp. 403
12.4 Costs, Weight and Precision in Machine Tools for Aerospace Machiningp. 405
12.4.1 The Drive to Reduce Aircraft Costsp. 406
12.4.2 The Drive to Reduce Aircraft Weightp. 407
12.4.3 The Drive for Aircraft Component Precisionp. 407
12.5 Machine Tools for Aeronautical Componentsp. 408
12.5.1 Machine Tools for Machining Aeronautical Structuresp. 409
12.5.2 Machine Tools for Machining Engine Componentsp. 413
12.5.3 Machine Tools for Machining Accessories and Structure Fittingsp. 417
Referencesp. 419
13 Machine Tools for the Automotive Industryp. 421
13.1 World Trends in Automotive Productionp. 421
13.1.1 The Economic Impact of the Automotive Industryp. 421
13.1.2 Machining Processes in Automotive Productionp. 422
13.2 Manufacturing System Architecture: High Volume Production Versus Flexibilityp. 423
13.2.1 Dedicated Machinesp. 424
13.2.2 Flexible Cellsp. 427
13.2.3 Hybrid Systemsp. 429
13.3 Technology Trendsp. 433
Referencesp. 435
Indexp. 437
Go to:Top of Page