Cover image for Medical imaging : principles, detectors, and electronics
Title:
Medical imaging : principles, detectors, and electronics
Personal Author:
Publication Information:
New York : Wiley, 2009
Physical Description:
305 p. : ill. ; 24 cm.
ISBN:
9780470391648

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010193026 R857.O6 I54 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

A must-read for anyone working in electronics in the healthcare sector

This one-of-a-kind book addresses state-of-the-art integrated circuit design in the context of medical imaging of the human body. It explores new opportunities in ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), nuclear medicine (PET, SPECT), emerging detector technologies, circuit design techniques, new materials, and innovative system approaches.

Divided into four clear parts and with contributions from a panel of international experts, Medical Imaging systematically covers:

X-ray imaging and computed tomography-X-ray and CT imaging principles; Active Matrix Flat Panel Imagers (AMFPI) for diagnostic medical imaging applications; photon counting and integrating readout circuits; noise coupling in digital X-ray imaging

Nuclear medicine-SPECT and PET imaging principles; low-noise electronics for radiation sensors

Ultrasound imaging-Electronics for diagnostic ultrasonic imaging

Magnetic resonance imaging-Magnetic resonance imaging principles; MRI technology


Author Notes

Krzysztof Iniewski, PhD, manages RD chip development activities at Redlen Technologies. Previously, he was an associate professor in the electrical engineering and computer engineering department of the University of Alberta, where he conducted research on low-power wireless circuits and systems. His research interests are in VLSI circuits for medical and security applications. Dr. Iniewski has published over 100 international journal or conference papers, and holds eighteen international patents.


Table of Contents

Krzysztof IniewskiKarim KarimEdgar Kraft and Ivan PericJan Thim and Borje NorlinAnna CellerGianluigi de GeronimoRobert Wodnicki and Bruno Haider and Kai E. ThomeniusPiotr KozlowskiNicola De Zanche
Prefacep. xiii
About the Editorp. xv
Contributorsp. xvii
I X-Ray Imaging and Computed Tomographyp. 1
1 X-Ray and Computed Tomography Imaging Principlesp. 3
1.1 Introduction to X-Ray Imagingp. 3
1.2 X-Ray Generationp. 6
1.3 X-Ray Interaction with Matterp. 9
1.4 X-Ray Detectionp. 12
1.5 Electronics for X-Ray Detectionp. 13
1.6 CT Imaging Principlep. 14
1.7 CT Scannersp. 15
1.8 Color X-Ray Imagingp. 17
1.9 Future of X-Ray and CT Imagingp. 18
Referencesp. 21
2 Active Matrix Flat Panel Imagers (AMFPI) for Diagnostic Medical Imaging Applicationsp. 23
2.1 Introductionp. 23
2.1.1 Digital Imagingp. 23
2.1.2 Detection Schemesp. 24
2.1.3 Chapter Organizationp. 27
2.2 Pixel Technologyp. 27
2.2.1 Operationp. 27
2.2.1.1 Introductionp. 27
2.2.1.2 Operationp. 28
2.2.1.3 Charge Sensing or Voltage Sensing?p. 29
2.2.1.4 Gain and Linearityp. 30
2.2.1.5 Readout Ratep. 30
2.2.2 Fabricationp. 31
2.2.2.1 TFT Structure and Processp. 31
2.2.2.2 Nonoverlapped Electrode Processp. 32
2.2.2.3 Fully Overlapped Processp. 33
2.2.3 TFT Metastabilityp. 33
2.2.3.1 Physical Mechanismsp. 33
2.2.3.2 Positive Gate Bias Stressp. 37
2.2.3.3 Negative Gate Bias Stressp. 37
2.2.3.4 Effect of DC Bias Stress on Leakage Currentp. 38
2.2.3.5 Pulse Bias Metastabilityp. 38
2.2.4 Electronic Noisep. 41
2.2.4.1 Thermal Noisep. 41
2.2.4.2 Flicker Noisep. 42
2.2.4.3 Noise in PPS Pixelsp. 44
2.3 Recent Developmentsp. 45
2.3.1 Current Mode Active Pixel Sensorp. 46
2.3.1.1 Linearityp. 47
2.3.1.2 Gainp. 48
2.3.2 Application to Emerging Diagnostic Medical X-Ray Imaging Modalitiesp. 52
2.3.2.1 Dual-Mode Radiography/Fluoroscopy (R/F)p. 52
2.3.2.2 3D Mammography Tomosynthesisp. 53
Referencesp. 55
3 Circuits for Digital X-Ray Imaging: Counting and Integrationp. 59
3.1 Introductionp. 59
3.1.1 Image Formationp. 59
3.1.2 X-Ray Detectorsp. 60
3.1.2.1 Indirect Detectorsp. 60
3.1.2.2 Direct Detectorsp. 60
3.1.2.3 Hybrid Pixel Detectorsp. 60
3.1.2.4 Readout Concepts for Hybrid Pixel Detectorsp. 61
3.2 Circuit Implementationp. 61
3.2.1 The Photon Counterp. 62
3.2.2 The Integratorp. 63
3.2.3 The Feedback Circuitp. 66
3.2.3.1 Feedback and Signal Duplicationp. 66
3.2.3.2 Static Leakage Current Compensationp. 67
3.2.3.3 Samplingp. 67
3.3 Experimental Resultsp. 68
3.3.1 Photon Counter Measurementsp. 68
3.3.1.1 Dynamic Rangep. 68
3.3.1.2 Electronic Noisep. 69
3.3.1.3 Noise Count Ratep. 69
3.3.2 Integrator Measurementsp. 71
3.3.2.1 Dynamic Rangep. 71
3.3.2.2 Noise Performancep. 71
3.3.3 Simultaneous Photon Counting and Integrationp. 72
3.3.3.1 Total Dynamic Rangep. 72
3.3.3.2 Pulse Size Reconstructionp. 74
3.3.3.3 Spectral Resolutionp. 75
3.3.3.4 Spectral Hardeningp. 75
3.4 Conclusionp. 76
Referencesp. 77
4 Noise Coupling in Digital X-Ray Imagingp. 79
4.1 Characterization of Noise Problems in Detector Systemsp. 79
4.2 Noise Mechanisms in Readout Electronicsp. 82
4.2.1 Noise Modelsp. 83
4.2.1.1 Capacitive Couplingp. 84
4.2.1.2 Impact Ionizationp. 85
4.2.2 Physical Propertiesp. 86
4.2.2.1 Power Distribution Networksp. 86
4.2.2.2 Substratesp. 88
4.3 Simulation Models in Various Design Levelsp. 92
4.4 Readout Electronics Noise Coupling in Digital X-Ray Systemsp. 93
4.4.1 Noise Coupling Effects on the Design Example Systemp. 94
Referencesp. 97
II Nuclear Medicine (Spect and Pet)p. 101
5 Nuclear Medicine: SPECT and PET Imaging Principlesp. 103
5.1 Introductionp. 103
5.2 Nuclear Medicine Imagingp. 104
5.3 Radiotracersp. 105
5.4 Detection Systemsp. 107
5.5 Clinical SPECT Camera-Principles of Operationp. 107
5.6 Clinical PET-Principles of Operationp. 111
5.7 Comparison of Small Animal Scanners with Clinical Systemsp. 114
5.8 Electronic Collimation Principle and Compton Camerap. 116
5.9 Hybrid SPECT-CT and PET-CT Systemsp. 117
5.10 Physics Effects Limiting Quantitative Measurementp. 117
5.11 Tomographic Reconstruction Methodsp. 118
5.11.1 Filtered Back-Projection Reconstructionp. 118
5.11.2 Iterative Reconstruction Algorithmsp. 119
5.12 Dynamic Imagingp. 121
5.13 Quantitative Imagingp. 122
5.14 Clinical Applicationsp. 123
Referencesp. 124
6 Low-Noise Electronics for Radiation Sensorsp. 127
6.1 Introduction: Readout of Signals from Radiation Sensorsp. 127
6.2 Low-Noise Charge Amplificationp. 129
6.2.1 Input MOSFET Optimizationp. 129
6.2.2 Adaptive Continuous Resetp. 135
6.3 Shaping and Baseline Stabilizationp. 138
6.3.1 High-Order Shapingp. 139
6.3.2 Output Baseline Stabilization-The Baseline Holderp. 146
6.4 Extractionp. 150
6.4.1 Single- and Multiamplitude Discriminationp. 150
6.4.2 Peak- and Time-Detection: The Multiphase Peak Detectorp. 152
6.4.3 Current-Mode Peak Detector and Digitizerp. 158
6.5 Conclusionsp. 160
Acknowledgmentsp. 160
Referencesp. 160
III Ultrasound Imagingp. 165
7 Electronics for Diagnostic Ultrasoundp. 167
7.1 Introductionp. 167
7.2 Ultrasound Imaging Principlesp. 168
7.2.1 Ultrasound Scanningp. 169
7.2.1.1 Sector Scan Probesp. 170
7.2.1.2 Linear Scan Probesp. 170
7.2.1.3 Curved Array Probesp. 170
7.2.1.4 Compound Imagingp. 171
7.2.2 Understanding Ultrasound Imagesp. 171
7.2.2.1 Ultrasound Tissue Phantomp. 171
7.2.2.2 Diagnostic Imagesp. 172
7.2.3 Ultrasound Beam Formationp. 172
7.2.3.1 Focusing and Steeringp. 172
7.2.3.2 Translation of the Aperturep. 173
7.2.3.3 Transmit Beam Formationp. 173
7.2.3.4 Receive Beam Formationp. 173
7.2.4 Ultrasound Transmit/Receive Cyclep. 174
7.2.5 Imaging Techniquesp. 175
7.2.5.1 Apodization or Weightingp. 175
7.2.5.2 Dynamic Focusingp. 176
7.2.5.3 Multiline Acquisitionp. 177
7.2.5.4 Codesp. 178
7.2.5.5 Doppler Imagingp. 178
7.2.5.6 Harmonic Imagingp. 179
7.2.6 Image Quality Performance Parametersp. 179
7.2.6.1 Reflectionp. 179
7.2.6.2 Absorptionp. 179
7.2.6.3 Resolutionp. 180
7.2.6.4 Dynamic Rangep. 181
7.2.6.5 Specklep. 182
7.2.7 Ultrasound Imaging Modalitiesp. 182
7.3 The Ultrasound Systemp. 183
7.3.1 Transducersp. 183
7.3.2 High-Voltage Multiplexerp. 184
7.3.3 High-Voltage Transmit/Receive Switchp. 184
7.3.4 High-Voltage Transmittersp. 184
7.3.5 Receive Amplifier and Time Gain Controlp. 185
7.3.6 Analog-to-Digital Converter and Beamformerp. 185
7.3.7 Signal and Image-Processingp. 185
7.4 Transducersp. 185
7.4.1 Acoustic Characteristicsp. 186
7.4.2 Transducer Performance Characteristicsp. 187
7.4.3 Design and Modelingp. 189
7.4.3.1 Electrical Impedance Modelsp. 189
7.4.4 Alternative Transducer Technologiesp. 190
7.5 Transmit Electronicsp. 192
7.5.1 High-Voltage CMOS Devicesp. 192
7.5.2 Transmit/Receive (T/R) Switchp. 194
7.5.3 High-Voltage Pulsersp. 195
7.5.3.1 Unipolar and Trilevel Pulsersp. 195
7.5.3.2 Multilevel Pulsersp. 197
7.5.3.3 High-Voltage Multiplexersp. 199
7.5.3.4 Tuningp. 201
7.6 Receive Electronicsp. 201
7.6.1 Front-End Receive Signal Chainp. 201
7.6.2 Low-Noise Preamplifierp. 202
7.6.3 Time Gain Control Amplifierp. 202
7.6.4 Analog-to-Digital Converterp. 203
7.6.5 Power Dissipation and Device Integrationp. 203
7.7 Beam-Forming Electronicsp. 204
7.7.1 Digital Beam Formersp. 204
7.7.2 Analog Beam Formersp. 205
7.7.3 Hybrid Beam Formersp. 206
7.7.4 Reconfigurable Arraysp. 206
7.8 Miniaturizationp. 207
7.8.1 Portable Systemsp. 208
7.8.1.1 Tablet and Handheld Style Unitsp. 209
7.8.1.2 Laptop-Style Unitsp. 209
7.8.2 Transducer-ASIC Integration Strategiesp. 209
7.8.2.1 Co-integrated Single-Chip Devicesp. 210
7.8.2.2 Highly Integrated Multichip Devicesp. 211
7.8.3 Challenges to Effective Miniaturizationp. 212
7.9 Summaryp. 214
Acknowledgmentsp. 214
Referencesp. 214
IV Magnetic Resonance Imagingp. 221
8 Magnetic Resonance Imagingp. 223
8.1 Introductionp. 223
8.2 Nuclear Magnetic Resonance (NMR)p. 226
8.2.1 Interaction of Protons with Magnetic Fieldsp. 228
8.2.2 Macroscopic Magnetization and T1 Relaxationp. 229
8.2.3 Rotating Frame and Resonance Conditionp. 230
8.2.4 T2 Relaxation and Bloch Equationsp. 234
8.2.5 Signal Reception, Free Induction Decay, and Spin-Echop. 237
8.2.6 Chemical Shift and NMR Spectroscopyp. 240
8.3 Magnetic Resonance Imaging (MRI)p. 242
8.3.1 Spatial Localizationp. 242
8.3.1.1 Slice Selectionp. 244
8.3.1.2 Frequency Encodingp. 246
8.3.1.3 Phase Encodingp. 248
8.3.2 k-Spacep. 250
8.3.3 Basic MRI Techniquesp. 252
8.3.3.1 Spin Echop. 253
8.3.3.2 Gradient Echop. 256
8.3.4 Signal and Noise in MRIp. 257
8.3.5 Fast MRI Techniquesp. 260
8.3.5.1 RARE Imagingp. 260
8.3.5.2 Steady-State Magnetization Imagingp. 262
8.3.5.3 Echo Planar Imagingp. 266
8.3.5.4 Other Fast Imaging Techniquesp. 269
8.3.6 Magnetic Resonance Spectroscopy (MRS)p. 273
Referencesp. 280
9 MRI Technology: Circuits and Challenges for Receiver Coil Hardwarep. 285
9.1 Introductionp. 285
9.1.1 The MRI Systemp. 285
9.1.2 Typical RF Receive Coil Arrayp. 287
9.2 Conductorless Signal Transmissionp. 288
9.2.1 Possible Implementationsp. 289
9.2.1.1 Analog Transmission over Optical Fiberp. 289
9.2.1.2 Wireless Analog Transmissionp. 290
9.2.1.3 Digital Transmission over Optical Fiberp. 290
9.2.1.4 Wireless Digital Transmissionp. 290
9.2.2 General Issuesp. 291
9.2.3 Power Use and Deliveryp. 291
9.2.4 Low-Power Alternatives to PIN Diodesp. 292
9.3 On-board Data Compression: The Scaleable, Distributed Spectrometerp. 294
9.3.1 On-Coil Detection and Demodulationp. 294
9.3.2 Online Data Pre-processing: Array Compression, Virtual Arrays, and Preconditioningp. 297
9.4 Conclusionp. 299
Referencesp. 299
Indexp. 303