Cover image for Crystal structure analysis : principles and practice
Title:
Crystal structure analysis : principles and practice
Publication Information:
Oxford : Oxford Science Publications, 2001
ISBN:
9780198506188
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010025915 QD945 C79 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

This text focuses on the practical aspects of crystal structure analysis, and provides the necessary conceptual framework for understanding and applying the technique. By choosing an approach that avoids undue emphasis on the mathematics involved, the book gives practical advice on topics such as growing crystals, solving and refining structures, and understanding and using the results. The technique described is a core experimental method in modern structural chemistry, and plays an ever more important role in the careers of final-year undergraduates, graduate students, postdoctoral and academic staff in chemistry.


Author Notes

Alexander J. Blake is at the School of Chemistry, The University of Nottingham. Robert O. Gould is in the Structural Biochemistry Unit, University of Edinburgh. Peter Main is in the Department of Physics, University of York. William Clegg is in the Department of Chemistry, University of Newcastle.


Table of Contents

1 A basic introduction to X-ray crystallographyp. 1
1.1 X-ray scattering from electronsp. 1
1.2 X-ray scattering from atomsp. 1
1.3 X-ray scattering from the contents of a unit cellp. 3
1.4 The effects of the crystal latticep. 3
1.5 X-ray scattering from the crystalp. 4
1.6 The structure factor equationp. 4
1.7 The electron density equationp. 5
1.8 A mathematical relationshipp. 6
1.9 Bragg's lawp. 6
1.10 Resolutionp. 7
1.11 The phase problemp. 8
1.12 A flowchart for crystal structure determinationp. 9
2 Crystal growth, evaluation and mountingp. 10
2.1 Crystal growthp. 10
2.2 Survey of methodsp. 10
2.2.1 Solution methodsp. 10
2.2.2 Sublimationp. 15
2.2.3 Fluid phase growthp. 15
2.2.4 Solid-state synthesisp. 16
2.2.5 General commentsp. 16
2.3 Sample evaluationp. 17
2.3.1 Microscopyp. 17
2.3.2 X-ray photographyp. 18
2.3.3 Diffractometryp. 18
2.4 Crystal mountingp. 18
2.4.1 Standard proceduresp. 18
2.4.2 Air-sensitive crystalsp. 20
Referencesp. 21
Some references on crystal growth and handlingp. 21
Exercisesp. 22
3 Symmetry and space group determinationp. 24
3.1 Introductionp. 24
3.2 Basic operations and point groupsp. 25
3.3 External morphologyp. 26
3.4 Diffraction symmetry and the amount of independent datap. 29
3.5 Internal symmetry and translational symmetry operationsp. 29
3.6 Detection of symmetry elements from intensity statisticsp. 32
3.7 Further notes on space group symbolsp. 34
3.8 Symmetry restrictions on atoms in special positionsp. 37
Exercisesp. 38
4 Background theory for data collectionp. 42
4.1 Introductionp. 42
4.2 The geometry of X-ray diffractionp. 42
4.3 The reciprocal latticep. 44
4.4 Unit cell and orientation matrix on a diffractometerp. 45
4.5 Obtaining a matrix and cell from initially found reflectionsp. 47
4.6 Symmetry aspects of the diffraction patternp. 48
Referencesp. 49
Exercisesp. 49
5 Data collection using four-circle diffractometersp. 51
5.1 Introductionp. 51
5.2 Experimental conditionsp. 51
5.2.1 Radiationp. 51
5.2.2 Temperaturep. 52
5.2.3 Other conditionsp. 52
5.3 Getting startedp. 53
5.3.1 Reflection searchingp. 53
5.3.2 Indexing, orientation matrix and cell determinationp. 55
5.3.3 Finding the correct cellp. 56
5.3.4 Obtaining a good orientation matrixp. 57
5.3.5 Obtaining the best unit cell dimensionsp. 58
5.4 Preparing for data collectionp. 58
5.4.1 Introductionp. 58
5.4.2 Parametersp. 59
5.5 Data collectionp. 62
5.6 Gross systematic errorsp. 63
5.7 Correction of intensity datap. 63
5.7.1 Absorption correctionsp. 63
5.7.2 Decay correctionsp. 65
5.7.3 Other possible correctionsp. 65
Exercisesp. 66
6 Area detectorsp. 69
6.1 Introductionp. 69
6.2 Types of area detectorsp. 69
6.3 Some characteristics of CCD area detector systemsp. 72
6.4 A typical experimentp. 74
6.4.1 Crystal screeningp. 74
6.4.2 Unit cell and orientation matrix determinationp. 74
6.4.3 Data collectionp. 76
6.4.4 Data reduction and correctionsp. 76
7 Fourier synthesesp. 77
7.1 Fourier synthesis in 1Dp. 77
7.2 A 1D example--iron pyritesp. 78
7.3 The 2D synthesisp. 80
7.4 The 3D synthesisp. 84
7.5 Uses of Fouriersp. 84
7.6 Weighted Fouriersp. 85
Exercisesp. 87
8 Structure determination by Patterson methodsp. 90
8.1 The heavy atom methodp. 93
8.2 Patterson search techniquesp. 96
8.2.1 Rotation searchp. 97
8.2.2 Translation searchp. 97
Exercisesp. 100
9 Direct methods of crystal structure determinationp. 102
9.1 Amplitudes and phasesp. 102
9.2 The physical basis of direct methodsp. 103
9.3 Constraints on the electron densityp. 103
9.3.1 Discrete atomsp. 104
9.3.2 Non-negative electron densityp. 104
9.3.3 Random atomic distributionp. 106
9.3.4 Maximum value of [function of] [rho superscript 3] (x) dVp. 107
9.3.5 Equal atomsp. 108
9.3.6 Maximum entropyp. 108
9.3.7 Equal molecules and [rho] (x) = constantp. 109
9.4 Structure invariantsp. 109
9.5 Structure determinationp. 109
9.5.1 Calculation of E valuesp. 110
9.5.2 Setting up phase relationshipsp. 111
9.5.3 Finding reflections for phase determinationp. 111
9.5.4 Assignment of starting phasesp. 112
9.5.5 Phase determination and refinementp. 112
9.5.6 Figures of meritp. 113
9.5.7 Interpretation of mapsp. 114
9.5.8 Completion of the structurep. 114
Referencesp. 114
Exercisesp. 114
General bibliographyp. 117
10 An introduction to maximum entropyp. 119
10.1 Entropyp. 119
10.2 Maximum entropyp. 119
10.3 Calculations with incomplete datap. 120
10.4 Forming imagesp. 122
10.5 Entropy and probabilityp. 122
10.6 Electron density mapsp. 123
11 Least-squares fitting of parametersp. 125
11.1 Weighted meanp. 125
11.2 Linear regressionp. 126
11.3 Variances and covariancesp. 127
11.4 Restraintsp. 128
11.5 Constraintsp. 129
11.6 Non-linear least squaresp. 131
11.7 Ill-conditioningp. 133
11.8 Computing timep. 134
Exercisesp. 134
12 Practical aspects of structure refinementp. 135
12.1 Introductionp. 135
12.2 Datap. 136
12.3 Parametersp. 138
12.4 Constraintsp. 140
12.5 Restraintsp. 141
12.6 Refinement proceduresp. 142
12.7 Disorderp. 144
12.8 Twinningp. 144
12.9 Absolute structurep. 145
12.10 Other problemsp. 146
Exercisesp. 147
13 The derivation of resultsp. 148
13.1 Introductionp. 148
13.2 Statistical backgroundp. 149
13.2.1 Some basic mathematics and statisticsp. 149
13.2.2 Errors, precision and accuracyp. 153
13.2.3 Estimated standard deviations/standard uncertainties in crystallographic resultsp. 154
13.3 Analysis of the agreement between observed and calculated datap. 156
13.3.1 Observed and calculated datap. 157
13.3.2 Significance testingp. 159
13.4 Geometryp. 159
13.4.1 Bond lengths, bond angles and torsion anglesp. 160
13.4.2 Least-squares planes and dihedral anglesp. 162
13.4.3 Conformations of rings and other molecular featuresp. 163
13.4.4 Hydrogen atoms and hydrogen bondingp. 163
13.5 Thermal motionp. 164
13.5.1 [beta], B and U parametersp. 164
13.5.2 'The equivalent isotropic displacement parameter'p. 165
13.5.3 Models of thermal motion and geometrical corrections: rigid body motionp. 166
13.5.4 Temperature and atomic displacement parametersp. 167
Referencesp. 167
Exercisesp. 167
14 The interpretation of resultsp. 169
14.1 Introductionp. 169
14.2 Averages, comparisons and differencesp. 169
14.2.1 Comparison of geometrical parametersp. 169
14.2.2 Averaging geometrical parametersp. 171
14.2.3 When is a set of atoms genuinely planar?p. 172
14.2.4 Comparing different structuresp. 173
14.3 Interpretation of interatomic distances and bondsp. 175
14.4 The effects of errors on structural resultsp. 176
14.4.1 Systematic errors in the datap. 177
14.4.2 Data thresholds and weightingp. 178
14.4.3 Errors and limitations of the modelp. 178
14.5 Assessment of a structure determinationp. 181
Referencesp. 182
Exercisesp. 183
15 The presentation of resultsp. 184
15.1 Introductionp. 184
15.2 Graphicsp. 184
15.2.1 Graphics programsp. 185
15.2.2 Underlying conceptsp. 185
15.2.3 Drawing stylesp. 187
15.3 Creating three-dimensional illusionsp. 192
15.4 The use of colourp. 193
15.5 Textual information in drawingsp. 194
15.6 Some hints for effective drawingsp. 194
15.7 Tables of resultsp. 196
15.8 The content of tablesp. 196
15.9 The format of tablesp. 198
15.10 Hints on presentationp. 198
15.11 Archiving of resultsp. 201
Referencesp. 202
Exercisesp. 203
16 The Crystallographic Information Filep. 205
16.1 Introductionp. 205
16.2 Basicsp. 205
16.3 Uses of CIFp. 207
16.4 Some properties of the CIF formatp. 207
16.5 Some practicalitiesp. 209
16.5.1 Stringsp. 209
16.5.2 Textp. 209
16.5.3 Checking the CIFp. 210
Referencesp. 210
Exercisesp. 211
17 Crystallographic databasesp. 214
17.1 Available structural databasesp. 214
17.2 Contents of the Cambridge Structural Databasep. 215
17.3 Searching the CSDp. 216
18 Other topicsp. 218
18.1 Twinningp. 218
18.2 Anomalous dispersionp. 220
18.3 Sources of X-raysp. 223
Referencesp. 226
Appendix 1 Useful mathematics and formulaep. 227
Appendix 2 A short crystallographic dictionaryp. 237
Appendix 3 Answers to exercisesp. 245
Indexp. 263