Skip to:Content
|
Bottom
Cover image for Underwater robots : motion and force control of vehicle-manipulator systems
Title:
Underwater robots : motion and force control of vehicle-manipulator systems
Personal Author:
Series:
Springer tracts in advanced robotics ; 2
Edition:
2nd ed.
Publication Information:
Berlin : Springer, 2006
ISBN:
9783540317524

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010140016 TC1662 A57 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

This book deals with the state of the art in underwater robotics experiments of dynamic control of an underwater vehicle. The author presents experimental results on motion control and fault tolerance to thrusters faults with the autonomous vehicle ODIN. This second substantially improved and expanded edition new features are presented dealing with fault-tolerant control and coordinated control of autonomous underwater vehicles.


Table of Contents

1 Modelling of Underwater Robotsp. 1
1.1 Introductionp. 1
1.2 Rigid Body's Kinematicsp. 1
1.2.1 Attitude representation by Euler anglesp. 2
1.2.2 Attitude representation by quaternionp. 3
1.2.3 Attitude error representationp. 4
1.3 Rigid Body's Dynamicsp. 6
1.3.1 Rigid body's dynamics in matrix formp. 8
1.4 Hydrodynamic Effectsp. 10
1.4.1 Added mass and inertiap. 10
1.4.2 Damping effectsp. 12
1.4.3 Current effectsp. 13
1.5 Gravity and Buoyancyp. 14
1.6 Thrusters' Dynamicsp. 15
1.7 Underwater Vehicles' Dynamics in Matrix Formp. 16
1.8 Kinematics of Manipulators with Mobile Basep. 17
1.9 Dynamics of Underwater Vehicle-Manipulator Systemsp. 19
1.9.1 Linearity in the parametersp. 21
1.10 Contact with the Environmentp. 21
2 Kinematic Controlp. 23
2.1 Introductionp. 23
2.2 Kinematic Controlp. 24
2.3 Application of Kinematic Control to UVMSsp. 29
2.4 Fuzzy Inverse Kinematicsp. 30
2.5 Simulationsp. 32
2.5.1 Simulations of the singularity-robust task-priority techniquep. 32
2.5.2 Simulations of the fuzzy task-priority techniquep. 39
2.6 Further Researchp. 50
3 Dynamic Controlp. 55
3.1 Literature survey of UVMSs Dynamic Controlp. 55
3.2 Sliding Mode Controlp. 57
3.2.1 Stability analysisp. 58
3.2.2 Simulationsp. 60
3.3 Adaptive Controlp. 63
3.3.1 Stability analysisp. 64
3.3.2 Simulationsp. 66
3.4 Output Feedback Controlp. 69
3.4.1 Stability analysisp. 74
3.4.2 Simulationsp. 78
3.5 Virtual Decomposition Based Controlp. 90
3.5.1 Stability analysisp. 93
3.5.2 Simulationsp. 95
3.6 Experiments on ODIN: an Autonomous Underwater Vehiclep. 101
3.6.1 Experimental Set-Upp. 102
3.6.2 Implementation issuesp. 103
3.6.3 Experimentsp. 104
3.6.4 Experiments of fault tolerance to thrusters' faultp. 106
3.7 On the use of Adaptive/Integral Control Actions for Under-water Vehicle Controlp. 110
3.7.1 A novel adaptive control law for AUVsp. 112
3.7.2 Stability Analysisp. 114
3.7.3 Implementation aspectsp. 116
3.7.4 Comparison with known controllersp. 117
3.7.5 Comparative simulation studyp. 121
3.7.6 Conclusions and extension to UVMSsp. 129
3.8 Conclusionsp. 134
3.9 Further Researchp. 134
4 Interaction Controlp. 135
4.1 Introduction to Interaction Control of Robotsp. 135
4.2 External Force Controlp. 136
4.2.1 Inverse kinematicsp. 137
4.2.2 Stability analysisp. 138
4.2.3 Robustnessp. 139
4.2.4 Loss of contactp. 140
4.2.5 Implementation issuesp. 140
4.2.6 Simulationsp. 141
4.3 Explicit Force Controlp. 144
4.3.1 Robustnessp. 148
4.3.2 Simulationsp. 149
4.4 Further Researchp. 154
Conclusionsp. 155
A SIMURV. A Simulation Package for Underwater Vehicle-Manipulator Systemsp. 159
A.1 Introductionp. 159
A.2 Description of the algorithmsp. 160
A.2.1 Articulated Body algorithmp. 160
A.2.2 Composite Rigid Body algorithmp. 161
A.3 Simurvp. 161
B Mathematical modelsp. 165
B.1 Introductionp. 165
B.2 Phoenixp. 165
B.3 Phoenix+6dofs SMART 3Sp. 167
B.4 ODINp. 168
B.5 9-dofs UVMSp. 169
Referencesp. 171
Go to:Top of Page