Skip to:Content
|
Bottom
Cover image for Heat transfer in industrial combustion
Title:
Heat transfer in industrial combustion
Personal Author:
Publication Information:
Boca Raton : CRC Press, c2000
Physical Description:
545 p. : ill. ; 27 cm.
ISBN:
9780849316999

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010310071 TJ260 B359 2000 Open Access Book Gift Book
Searching...

On Order

Summary

Summary

Industry relies heavily on the combustion process. The already high demand for energy, primarily from combustion, is expected to continue to rapidly increase. Yet, the information is scattered and incomplete, with very little attention paid to the overall combustion system. Designed for practicing engineers, Heat Transfer in Industrial Combustion eclipses the extant literature with an emphasis on the aspects of heat transfer that directly apply to industry.

From a practical point of view, the editor organizes relevant papers into a single, coherent resource. The book encompasses heat transfer, thermodynamics, and fluid mechanics, including the little-covered subjects of the use of oxygen to enhance combustion and flame impingement. Maximizing applications and minimizing theory, it covers modes of heat transfer, computer modeling, heat transfer from flame impingement, from burners, low temperature, high temperature, and advanced applications, and more.

The theoretical focus of most literature has created a clear need for a practical treatment of the heat transfer as it applies to industrial combustion systems. With detailed coverage and extensive references, Heat Transfer in Industrial Combustion fills this void.



Features


Author Notes

Charles E. Baukal, Jr., Ph.D., P.E., is the Director of the John Zink Company LLC R and D Test Center in Tulsa, OK. He has 20 years of experience in the fields of heat transfer and industrial combustion and has authored more than 50 publications in those fields, including editing the book Oxygen-Enhanced Combustion (CRC Press, Boca Raton, FL, 1998). He has a Ph.D. in mechanical engineering from the University of Pennsylvania, is a licensed Professional Engineer in the state of Pennsylvania, has been an adjunct instructor at several colleges, and has eight U.S. patents.


Table of Contents

Chapter 1 Introduction
1.1 Importance of Heat Transfer in Industrial Combustionp. 1
1.1.1 Energy Consumptionp. 1
1.1.2 Research Needsp. 1
1.2 Literature Discussionp. 6
1.2.1 Heat Transferp. 6
1.2.2 Combustionp. 7
1.2.3 Heat Transfer and Combustionp. 7
1.3 Combustion System Componentsp. 8
1.3.1 Burnersp. 8
1.3.1.1 Competing Prioritiesp. 9
1.3.1.2 Design Factorsp. 10
1.3.1.3 General Burner Typesp. 13
1.3.2 Combustorsp. 18
1.3.2.1 Design Considerationsp. 18
1.3.2.2 General Classificationsp. 19
1.3.3 Heat Loadp. 21
1.3.3.1 Process Tubesp. 21
1.3.3.2 Moving Substratep. 21
1.3.3.3 Opaque Materialsp. 22
1.3.3.4 Transparent Materialsp. 22
1.3.4 Heat Recovery Devicesp. 23
1.3.4.1 Recuperatorsp. 23
1.3.4.2 Regeneratorsp. 23
Referencesp. 24
Chapter 2 Some Fundamentals of Combustion
2.1 Combustion Chemistryp. 29
2.1.1 Fuel Propertiesp. 29
2.1.2 Oxidizer Compositionp. 30
2.1.3 Mixture Ratiop. 30
2.1.4 Operating Regimesp. 33
2.2 Combustion Propertiesp. 34
2.2.1 Combustion Productsp. 34
2.2.1.1 Oxidizer Compositionp. 34
2.2.1.2 Mixture Ratiop. 37
2.2.1.3 Air and Fuel Preheat Temperaturep. 38
2.2.1.4 Fuel Compositionp. 40
2.2.2 Flame Temperaturep. 40
2.2.2.1 Oxidizer and Fuel Compositionp. 40
2.2.2.2 Mixture Ratiop. 41
2.2.2.3 Oxidizer and Fuel Preheat Temperaturep. 43
2.2.3 Available Heatp. 43
2.2.4 Flue Gas Volumep. 46
2.3 Exhaust Product Transport Propertiesp. 48
2.3.1 Densityp. 49
2.3.2 Specific Heatp. 51
2.3.3 Thermal Conductivityp. 53
2.3.4 Viscosityp. 55
2.3.5 Prandtl Numberp. 58
2.3.6 Lewis Numberp. 60
Referencesp. 64
Chapter 3 Heat Transfer Modes
3.1 Introductionp. 65
3.2 Convectionp. 65
3.2.1 Forced Convectionp. 66
3.2.1.1 Forced Convection from Flamesp. 66
3.2.1.2 Forced Convection from Outside Combustor Wallp. 68
3.2.1.3 Forced Convection from Hot Gases to Tubesp. 68
3.2.2 Natural Convectionp. 68
3.2.2.1 Natural Convection from Flamesp. 68
3.2.2.2 Natural Convection from Outside Combustor Wallp. 69
3.3 Radiationp. 69
3.3.1 Surface Radiationp. 72
3.3.2 Nonluminous Radiationp. 82
3.3.2.1 Theoryp. 82
3.3.2.2 Combustion Studiesp. 90
3.3.3 Luminous Radiationp. 102
3.3.3.1 Theoryp. 102
3.3.3.2 Combustion Studiesp. 105
3.4 Conductionp. 109
3.4.1 Steady-State Conductionp. 110
3.4.2 Transient Conductionp. 113
3.5 Phase Changep. 114
3.5.1 Meltingp. 114
3.5.2 Boilingp. 114
3.5.2.1 Internal Boilingp. 116
3.5.2.2 External Boilingp. 116
3.5.3 Condensationp. 117
Referencesp. 117
Chapter 4 Heat Sources and Sinks
4.1 Heat Sourcesp. 123
4.1.1 Combustiblesp. 123
4.1.1.1 Fuel Combustionp. 123
4.1.1.2 Volatile Combustionp. 123
4.1.2 Thermochemical Heat Releasep. 124
4.1.2.1 Equilibrium TCHRp. 126
4.1.2.2 Catalytic TCHRp. 127
4.1.2.3 Mixed TCHRp. 127
4.2 Heat Sinksp. 127
4.2.1 Loadp. 128
4.2.1.1 Tubesp. 128
4.2.1.2 Substratep. 129
4.2.1.3 Granular Solidp. 129
4.2.1.4 Molten Liquidp. 131
4.2.1.5 Surface Conditionsp. 132
4.2.2 Wall Lossesp. 140
4.2.3 Openingsp. 143
4.2.3.1 Radiationp. 143
4.2.3.2 Gas Flow Through Openingsp. 143
4.2.4 Material Transportp. 145
Referencesp. 145
Chapter 5 Computer Modeling
5.1 Combustion Modelingp. 149
5.2 Modeling Approachesp. 150
5.2.1 Fluid Dynamicsp. 151
5.2.1.1 Moment Averagingp. 151
5.2.1.2 Vortex Methodsp. 152
5.2.1.3 Spectral Methodsp. 152
5.2.1.4 Direct Numerical Simulationp. 153
5.2.2 Geometryp. 153
5.2.2.1 Zero-Dimensional Modelingp. 153
5.2.2.2 One-Dimensional Modelingp. 153
5.2.2.3 Multi-dimensional Modelingp. 154
5.2.3 Reaction Chemistryp. 154
5.2.3.1 Nonreacting Flowsp. 155
5.2.3.2 Simplified Chemistryp. 155
5.2.3.3 Complex Chemistryp. 156
5.2.4 Radiationp. 156
5.2.4.1 Nonradiatingp. 156
5.2.4.2 Participating Mediap. 157
5.2.5 Time Dependencep. 158
5.2.5.1 Steady Statep. 158
5.2.5.2 Transientp. 158
5.3 Simplified Modelsp. 159
5.4 Computational Fluid Dynamic Modelingp. 159
5.4.1 Increasing Popularity of CFDp. 159
5.4.2 Potential Problems of CFDp. 161
5.4.3 Equationsp. 162
5.4.3.1 Fluid Dynamicsp. 162
5.4.3.2 Heat Transferp. 164
5.4.3.3 Chemistryp. 169
5.4.3.4 Multiple Phasesp. 170
5.4.4 Boundary and Initial Conditionsp. 171
5.4.4.1 Inlets and Outletsp. 172
5.4.4.2 Surfacesp. 172
5.4.4.3 Symmetryp. 172
5.4.5 Discretizationp. 173
5.4.5.1 Finite Difference Techniquep. 173
5.4.5.2 Finite Volume Techniquep. 174
5.4.5.3 Finite Element Techniquep. 175
5.4.5.4 Mixedp. 175
5.4.5.5 Nonep. 175
5.4.6 Solution Methodsp. 175
5.4.7 Model Validationp. 176
5.4.8 Industrial Combustion Examplesp. 177
5.4.8.1 Modeling Burnersp. 177
5.4.8.2 Modeling Combustorsp. 178
Referencesp. 181
Chapter 6 Experimental Techniques
6.1 Introductionp. 195
6.2 Heat Fluxp. 195
6.2.1 Total Heat Fluxp. 195
6.2.1.1 Steady-State Uncooled Solidsp. 196
6.2.1.2 Steady-State Cooled Solidsp. 196
6.2.1.3 Steady-State Cooled Gagesp. 197
6.2.1.4 Transient Uncooled Targetsp. 198
6.2.1.5 Transient Uncooled Gagesp. 198
6.2.2 Radiant Heat Fluxp. 200
6.2.2.1 Heat Flux Gagep. 200
6.2.2.2 Ellipsoidal Radiometerp. 203
6.2.2.3 Spectral Radiometerp. 204
6.2.2.4 Other Techniquesp. 204
6.2.3 Convective Heat Fluxp. 206
6.3 Temperaturep. 207
6.3.1 Gas Temperaturep. 207
6.3.1.1 Suction Pyrometerp. 207
6.3.1.2 Optical Techniquesp. 209
6.3.1.3 Fine Wire Thermocouplesp. 209
6.3.1.4 Line Reversalp. 213
6.3.2 Surface Temperaturep. 213
6.3.2.1 Embedded Thermocouplep. 213
6.3.2.2 Infrared Detectorsp. 214
6.4 Gas Flowp. 216
6.4.1 Gas Velocityp. 216
6.4.1.1 Pitot Tubesp. 216
6.4.1.2 Laser Doppler Velocimetryp. 218
6.4.1.3 Other Techniquesp. 219
6.4.2 Static Pressure Distributionp. 219
6.4.2.1 Stagnation Velocity Gradientp. 219
6.4.2.2 Stagnation Zonep. 220
6.5 Gas Speciesp. 221
6.6 Other Measurementsp. 221
6.7 Physical Modelingp. 223
Referencesp. 223
Chapter 7 Flame Impingement
7.1 Introductionp. 231
7.2 Experimental Conditionsp. 233
7.2.1 Configurationsp. 234
7.2.1.1 Flame Normal to a Cylinder in Crossflowp. 235
7.2.1.2 Flame Normal to a Hemispherically Nosed Cylinderp. 236
7.2.1.3 Flame Normal to a Plane Surfacep. 236
7.2.1.4 Flame Parallel to a Plane Surfacep. 238
7.2.2 Operating Conditionsp. 238
7.2.2.1 Oxidizersp. 238
7.2.2.2 Fuelsp. 240
7.2.2.3 Equivalence Ratiosp. 240
7.2.2.4 Firing Ratesp. 243
7.2.2.5 Reynolds Numberp. 243
7.2.2.6 Burnersp. 243
7.2.2.7 Nozzle Diameterp. 246
7.2.2.8 Locationp. 246
7.2.3 Stagnation Targetsp. 246
7.2.3.1 Sizep. 247
7.2.3.2 Target Materialsp. 248
7.2.3.3 Surface Preparationp. 248
7.2.3.4 Surface Temperaturesp. 250
7.2.4 Measurementsp. 250
7.3 Semianalytical Heat Transfer Solutionsp. 250
7.3.1 Equation Parametersp. 257
7.3.1.1 Thermophysical Propertiesp. 258
7.3.1.2 Stagnation Velocity Gradientp. 261
7.3.2 Equationsp. 263
7.3.2.1 Sibulkin Resultsp. 263
7.3.2.2 Fay and Riddell Resultsp. 263
7.3.2.3 Rosner Resultsp. 264
7.3.3 Comparisons With Experimentsp. 264
7.3.3.1 Forced Convection (Negligible TCHR)p. 264
7.3.3.2 Forced Convection with TCHRp. 266
7.3.4 Sample Calculationsp. 268
7.3.4.1 Laminar Flames Without TCHRp. 268
7.3.4.2 Turbulent Flames Without TCHRp. 269
7.3.4.2 Laminar Flames with TCHRp. 270
7.3.5 Summaryp. 270
7.4 Empirical Heat Transfer Correlationsp. 271
7.4.1 Thermophysical Propertiesp. 272
7.4.2 Flames Impinging Normal to a Cylinderp. 272
7.4.2.1 Local Convection Heat Transferp. 273
7.4.2.2 Average Convection Heat Transferp. 273
7.4.2.3 Average Convection Heat Transfer with TCHRp. 274
7.4.2.4 Average Radiation Heat Transferp. 274
7.4.2.5 Maximum Convection and Radiation Heat Transferp. 275
7.4.3 Flames Impining Normal to a Hemi-Nosed Cylinderp. 275
7.4.3.1 Local Convection Heat Transferp. 275
7.4.3.2 Local Convection Heat Transfer with TCHRp. 276
7.4.4 Flames Impinging Normal to a Plane Surfacep. 276
7.4.4.1 Local Convection Heat Transferp. 276
7.4.4.2 Local Convection Heat Transfer with TCHRp. 279
7.4.4.3 Average Convection Heat Transferp. 279
7.4.5 Flames Parallel to a Plane Surfacep. 280
7.4.5.1 Local Convection Heat Transfer With TCHRp. 280
7.4.5.2 Local Convection and Radiation Heat Transferp. 281
Referencesp. 281
Chapter 8 Heat Transfer from Burners
8.1 Introductionp. 285
8.2 Open-Flame Burnersp. 285
8.2.1 Momentum Effectsp. 285
8.2.2 Flame Luminosityp. 285
8.2.3 Firing Rate Effectsp. 287
8.2.4 Flame Shape Effectsp. 292
8.3 Radiant Burnersp. 296
8.3.1 Perforated Ceramic or Wire Mesh Radiant Burnersp. 300
8.3.2 Flame Impingement Radiant Burnersp. 301
8.3.3 Porous Refractory Radiant Burnersp. 302
8.3.4 Advanced Ceramic Radiant Burnersp. 307
8.3.5 Radiant Wall Burnersp. 311
8.3.6 Radiant Tube Burnersp. 311
8.4 Effects on Heat Transferp. 316
8.4.1 Fuel Effectsp. 316
8.4.1.1 Solid Fuelsp. 316
8.4.1.2 Liquid Fuelsp. 316
8.4.1.3 Gaseous Fuelsp. 316
8.4.1.4 Fuel Temperaturep. 317
8.4.2 Oxidizer Effectsp. 318
8.4.2.1 Oxidizer Compositionp. 318
8.4.2.2 Oxidizer Temperaturep. 318
8.4.3 Staging Effectsp. 320
8.4.3.1 Fuel Stagingp. 321
8.4.3.2 Oxidizer Stagingp. 322
8.4.4 Burner Orientationp. 322
8.4.4.1 Hearth-Fired Burnersp. 323
8.4.4.2 Wall-Fired Burnersp. 324
8.4.4.3 Roof-Fired Burnersp. 325
8.4.4.4 Side-Fired Burnersp. 326
8.4.5 Heat Recuperationp. 326
8.4.5.1 Regenerative Burnersp. 327
8.4.5.2 Recuperative Burnersp. 329
8.4.5.3 Furnace or Flue Gas Recirculationp. 331
8.4.6 Pulse Combustionp. 331
8.5 In-Flame Treatmentp. 335
Referencesp. 337
Chapter 9 Heat Transfer in Furnaces
9.1 Introductionp. 345
9.2 Furnacesp. 346
9.2.1 Firing Methodp. 347
9.2.1.1 Direct Firingp. 347
9.2.1.2 Indirect Firingp. 347
9.2.1.3 Heat Distributionp. 349
9.2.2 Load Processing Methodp. 351
9.2.2.1 Batch Processingp. 351
9.2.2.2 Continuous Processingp. 351
9.2.2.3 Hybrid Processingp. 352
9.2.3 Heat Transfer Mediump. 352
9.2.3.1 Gaseous Mediump. 352
9.2.3.2 Vacuump. 353
9.2.3.3 Liquid Mediump. 353
9.2.3.4 Solid Mediump. 354
9.2.4 Geometryp. 354
9.2.4.1 Rotary Geometryp. 355
9.2.4.2 Rectangular Geometryp. 358
9.2.4.3 Ladle Geometryp. 358
9.2.4.4 Vertical Cylindrical Geometryp. 360
9.2.5 Furnace Typesp. 360
9.2.5.1 Reverberatory Furnacep. 360
9.2.5.2 Shaft Kilnp. 362
9.2.5.3 Rotary Furnacep. 362
9.3 Heat Recoveryp. 363
9.3.1 Recuperatorsp. 364
9.3.2 Regeneratorsp. 364
9.3.3 Gas Recirculationp. 366
9.3.3.1 Flue Gas Recirculationp. 366
9.3.3.2 Furnace Gas Recirculationp. 366
Referencesp. 367
Chapter 10 Lower Temperature Applications
10.1 Introductionp. 369
10.2 Ovens and Dryersp. 369
10.2.1 Predryerp. 369
10.2.2 Dryerp. 372
10.3 Fired Heatersp. 375
10.3.1 Reformerp. 376
10.3.2 Process Heaterp. 378
10.4 Heat Treatingp. 384
10.4.1 Standard Atmospherep. 387
10.4.2 Special Atmospherep. 387
Referencesp. 391
Chapter 11 Higher Temperature Applications
11.1 Introductionp. 395
11.1.1 Furnacesp. 395
11.1.2 Industriesp. 395
11.2 Metals Industryp. 396
11.2.1 Ferrous Metal Productionp. 396
11.2.1.1 Electric Arc Furnacep. 396
11.2.1.2 Smeltingp. 399
11.2.1.3 Ladle Preheatingp. 399
11.2.1.4 Reheating Furnacep. 402
11.2.1.5 Forgingp. 407
11.2.2 Aluminum Metal Productionp. 408
11.3 Minerals Industryp. 410
11.3.1 Glassp. 411
11.3.1.1 Types of Traditional Glass-Melting Furnacesp. 412
11.3.1.2 Unit Melterp. 412
11.3.1.3 Recuperative Melterp. 412
11.3.1.4 Regenerative or Siemens Furnacep. 412
11.3.1.5 Oxygen-Enhanced Combustion for Glass Productionp. 414
11.3.1.6 Advanced Techniques for Glass Productionp. 416
11.3.2 Cement and Limep. 417
11.3.3 Bricks, Refractories, and Ceramicsp. 419
11.4 Waste Incinerationp. 419
11.4.1 Types of Incineratorsp. 422
11.4.1.1 Municipal Waste Incineratorsp. 422
11.4.1.2 Sludge Incineratorsp. 423
11.4.1.3 Mobile Incineratorsp. 424
11.4.1.4 Transportable Incineratorsp. 425
11.4.1.5 Fixed Hazardous Waste Incineratorsp. 425
11.4.2 Heat Transfer in Waste Incinerationp. 426
Referencesp. 428
Chapter 12 Advanced Combustion Systems
12.1 Introductionp. 433
12.2 Oxygen-Enhanced Combustionp. 433
12.2.1 Typical Use Methodsp. 434
12.2.1.1 Air Enrichmentp. 434
12.2.1.2 O[subscript 2] Lancingp. 435
12.2.1.3 Oxy/Fuelp. 435
12.2.1.4 Air-Oxy/Fuelp. 436
12.2.2 Operating Regimesp. 437
12.2.3 Heat Transfer Benefitsp. 437
12.2.3.1 Increased Productivityp. 437
12.2.3.2 Higher Thermal Efficienciesp. 438
12.2.3.3. Higher Heat Transfer Efficiencyp. 438
12.2.3.4 Increased Flexibilityp. 438
12.2.4 Potential Heat Transfer Problemsp. 439
12.2.4.1 Refractory Damagep. 439
12.2.4.2 Nonuniform Heatingp. 440
12.2.5 Industrial Heating Applicationsp. 440
12.2.5.1 Metalsp. 440
12.2.5.2 Mineralsp. 440
12.2.5.3 Incinerationp. 441
12.2.5.4 Otherp. 441
12.3 Submerged Combustionp. 441
12.3.1 Metals Productionp. 441
12.3.2 Minerals Productionp. 443
12.3.3 Liquid Heatingp. 444
12.4 Miscellaneousp. 444
12.4.1 Surface Combustor-Heaterp. 445
12.4.2 Direct-Fired Cylinder Dryerp. 445
Referencesp. 446
Appendices
Appendix A Reference Sources for Further Informationp. 449
Appendix B Common Conversionsp. 451
Appendix C Methods of Expressing Mixture Ratios for CH[subscript 4], C[subscript 3]H[subscript 8], and H[subscript 2]p. 453
Appendix D Properties for CH[subscript 4], C[subscript 3]H[subscript 8], and H[subscript 2] Flamesp. 459
Appendix E Fluid Dynamics Equationsp. 497
Appendix F Material Propertiesp. 501
Author Indexp. 521
Subject Indexp. 535
Go to:Top of Page