Skip to:Content
|
Bottom
Cover image for Electrical power systems quality
Title:
Electrical power systems quality
Personal Author:
Publication Information:
New York : McGraw Hill, 1996
ISBN:
9780070180314

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000003348301 TK1001 D83 1996 Open Access Book Book
Searching...
Searching...
30000003743394 TK1001 D83 1996 Open Access Book Book
Searching...
Searching...
30000003781733 TK1001 D83 1996 Open Access Book Book
Searching...

On Order

Summary

Summary

Power quality is at the forefront of concern for utilities, industries, consultants and manufacturers of voltage-sensitive equipment. This book covers all aspects of power supply, use, the causes of poor power quality, monitoring and analyzing the effects of abnormal voltages and currents, and mitigation measures.


Reviews 1

Choice Review

This well-written, timely book informs about one of the newest fields in the electric power industry--power quality. Two of the authors not only have worked in this area for many years but have also actively participated in developing US and international power quality standards. Since this is a new field, the authors begin with an explanation of terms. They then discuss the basic types of power quality problems; voltage sags and momentary outages that arise from motor starting and fault clearing; transient overvoltages from switching and lightning; longer term voltage variations and voltage regulation; and harmonics. The book finishes with chapters on common wiring problems and measurements for diagnosing power quality problems. There are very few books on this topic; recently published were Electric Power Quality, by G.T. Heydt (1991), and Electric Power Quality Control Techniques, by W.E. Kazibwe and M.H. Sendaula (1993); both provide more quantitative treatments. The more qualitative approach of the book under review opens the subject to a wider audience. The address of a World Wide Web homepage on the topic is included. General; upper-division undergraduates through professionals; two-year technical program students. L. J. Bohmann Michigan Technological University


Table of Contents

Forewordp. xi
Acknowledgmentsp. xiii
Chapter 1. Introductionp. 1
1.1 What Is Power Quality?p. 2
1.2 Power Quality = Voltage Qualityp. 5
1.3 Why Are We Concerned about Power Quality?p. 6
1.4 Who Should Use This Bookp. 7
1.5 Overview of the Contentsp. 8
Chapter 2. Terms and Definitionsp. 9
2.1 Need for a Consistent Vocabularyp. 9
2.2 General Classes of Power Quality Problemsp. 9
2.3 Translentsp. 13
2.3.1 Impulsive Transientp. 13
2.3.2 Osciliatory Transientp. 14
2.4 Long-Duration Voltage Variationsp. 17
2.4.1 Overvoltagep. 17
2.4.2 Undervoltagep. 17
2.4.3 Sustained Interruptionsp. 18
2.5 Short-Duration Voltage Variationsp. 18
2.5.1 Interruptionp. 19
2.5.2 Sags (Dips)p. 19
2.5.3 Swellsp. 22
2.6 Voltage Imbalancep. 23
2.7 Waveform Distortionp. 23
2.7.1 dc offsetp. 24
2.7.2 Harmonicsp. 24
2.7.3 Interharmonicsp. 26
2.7.4 Notchingp. 26
2.7.5 Noisep. 27
2.8 Voltage Fluctuationp. 27
2.9 Power Frequency Variationsp. 28
2.10 Power Quality Termsp. 29
2.11 Ambiguous Termsp. 36
2.12 CBEMA Curvep. 37
2.13 Referencesp. 38
Chapter 3. Voltage Sags and Interruptionsp. 39
3.1 Sources of Sags and Interruptionsp. 39
3.2 Area of Vulnerabilityp. 43
3.3 Fundamental Principles of Protectionp. 44
3.4 End-User Issuesp. 45
3.4.1 Ferroresonant Transformersp. 46
3.4.2 Magnetic Synthesizersp. 48
3.4.3 On-Line UPSp. 48
3.4.4 Standby UPSp. 49
3.4.5 Hybrid UPSp. 50
3.4.6 Motor-Generator Setsp. 50
3.4.7 Superconducting Magnetic Energy Storage Device (SMES)p. 51
3.4.8 End-User Equipment Specificationsp. 51
3.5 Motor-Starting Sagsp. 52
3.5.1 Motor-Starting Methodsp. 52
3.5.2 Estimating the Sag Severity during Full-Voltage Startingp. 54
3.6 Utility System Fault-Clearing Issuesp. 55
3.6.1 Overcurrent Coordination Principlesp. 55
3.6.2 Relaying Practicesp. 56
3.6.3 Fusesp. 56
3.6.4 Reclosingp. 57
3.6.5 Fuse Savingp. 59
3.6.6 Reliabilityp. 61
3.6.7 Impact of Eliminating Fuse Savingp. 63
3.6.8 Increased Sectionalizingp. 65
3.6.9 Midline or Tap Reclosersp. 71
3.6.10 Instantaneous Reclosingp. 72
3.6.11 Single-Phase Trippingp. 73
3.6.12 Current-Limiting Fusesp. 73
3.6.13 Adaptive Relayingp. 75
3.6.14 Ignoring Third-Harmonic Currentsp. 75
3.6.15 Utility Fault Preventionp. 77
3.6.16 Fault Locatingp. 78
3.7 Referencesp. 80
Chapter 4. Transient Overvoltagesp. 83
4.1 Sources of Transient Overvoltagesp. 83
4.1.1 Capacitor Switchingp. 83
4.1.2 Magnification of Capacitor-Switching Transientsp. 85
4.1.3 Lightningp. 88
4.2 Principles of Overvoltage Protectionp. 92
4.3 Devices for Overvoltage Protectionp. 96
4.4 Utility Capacitor-Switching Transientsp. 100
4.4.1 Switching Timesp. 100
4.4.2 Preinsertion Resistorsp. 101
4.4.3 Synchronous Closingp. 101
4.4.4 Capacitor Locationp. 103
4.5 Utility Lightning Protectionp. 104
4.5.1 Shieldingp. 105
4.5.2 Line Arrestersp. 106
4.5.3 Low-Side Surgesp. 108
4.5.4 Cable Protectionp. 113
4.5.5 Scout Arrester Schemep. 116
4.6 Load-Switching Transient Problemsp. 118
4.6.1 Nulsance Tripping of ASDsp. 118
4.6.2 Transients from Load Switchingp. 118
4.6.3 Transformer Energizingp. 120
4.7 Computer Tools for Transients Analysisp. 120
4.8 Referencesp. 122
Chapter 5. Harmonicsp. 123
5.1 Harmonic Distortionp. 124
5.2 Voltage vs. Current Distortionp. 127
5.3 Harmonics vs. Transientsp. 128
5.4 Total Harmonic Distortion and rms Valuep. 129
5.5 Power and Power Factorp. 130
5.6 Tripien Harmonicsp. 133
5.7 Single-Phase Power Suppliesp. 136
5.8 Three-Phase Power Convertersp. 138
5.8.1 dc drivesp. 140
5.8.2 ac drivesp. 141
5.8.3 Impact of Operating Conditionp. 142
5.8.4 Effects of ac Line Chokes on Harmonicsp. 143
5.9 Arcing Devicesp. 144
5.10 Saturable Devicesp. 145
5.11 Effects of Harmonic Distortionp. 148
5.11.1 Impact on Capacitorsp. 148
5.11.2 Impact on Transformersp. 150
5.11.3 Impact on Motorsp. 154
5.12 System Response Characteristicsp. 155
5.12.1 System Impedancep. 155
5.12.2 Capicitor Impedancep. 158
5.12.3 Parallel Resonancep. 159
5.12.4 Effects of Resistance and Resistive Loadp. 161
5.13 Principles for Controlling Harmonicsp. 162
5.13.1 Reducing Harmonic Currents in Loadsp. 163
5.13.2 Filteringp. 163
5.13.3 Modifying the System Frequency Responsep. 164
5.13.4 On Utility Distribution Feedersp. 164
5.13.5 In End-User Facilitiesp. 165
5.14 Locating Sources of Harmonicsp. 166
5.15 Devices for Filtering Harmonic Distortionp. 168
5.15.1 Passive Filtersp. 168
5.15.2 Active Filtersp. 170
5.16 Harmonic Study Procedurep. 171
5.17 Symmetrical Componentsp. 172
5.18 Modeling Harmonic Sourcesp. 174
5.19 Harmonic Filter Designp. 176
5.20 Telecommunications Interferencep. 180
5.21 Computer Tools for Harmonics Analysisp. 182
5.21.1 Capabilities for Harmonics Analysis Programsp. 183
5.21.2 Harmonic Analysis by Computer--Historical Perspectivep. 184
5.22 Referencesp. 187
5.23 Bibliographyp. 187
Chapter 6. Long-Duration Voltage Variationsp. 189
6.1 Principles of Regulating the Voltagep. 189
6.2 Devices for Voltage Regulationp. 190
6.2.1 Utility Step-Voltage Regulatorsp. 191
6.2.2 Ferroresonant Transformersp. 192
6.2.3 Electronic Tap-Switching Regulatorp. 193
6.2.4 Magnetic Synthesizersp. 194
6.2.5 On-Line UPS Systemsp. 194
6.2.6 Motor-Generator Setsp. 194
6.2.7 Static Var Compensatorsp. 195
6.3 Utility Voltage Regulator Applicationp. 196
6.3.1 Line Drop Compensatorp. 196
6.3.2 Regulators in Seriesp. 199
6.4 Capacitors for Voltage Regulationp. 200
6.4.1 Shunt Capacitorsp. 200
6.4.2 Series Capacitorsp. 201
6.5 End-User Capacitor Applicationp. 202
6.5.1 Location for Power Factor Correction Capacitorsp. 202
6.5.2 Voltage Risep. 203
6.5.3 Reduction in Power System Lossesp. 204
6.5.4 Reduction in Line Currentp. 205
6.5.5 Displacement Power Factor vs. True Power Factorp. 205
6.5.6 Selecting the Amount of Capacitancep. 206
6.6 Regulating Utility Voltage with Dispersed Sourcesp. 207
6.7 Referencep. 210
Chapter 7. Wiring and Groundingp. 211
7.1 Definitionsp. 211
7.2 Reasons for Groundingp. 216
7.3 Typical Wiring and Grounding Problemsp. 218
7.3.1 Problems with Conductors and Connectorsp. 218
7.3.2 Missing Safety Groundp. 218
7.3.3 Multiple Neutral-to-Ground Connectionsp. 219
7.3.4 Ungrounded Equipmentp. 219
7.3.5 Additional Ground Rodsp. 219
7.3.6 Ground Loopsp. 220
7.3.7 Insufficient Neutral Conductorp. 220
7.4 Solutions to Wiring and Grounding Problemsp. 221
7.4.1 Proper Grounding Practicesp. 221
7.4.2 Ground Electrode (Rod)p. 221
7.4.3 Service Entrance Connectionsp. 223
7.4.4 Panel Boardp. 224
7.4.5 Isolated Groundp. 225
7.4.6 Separately Derived Systemsp. 227
7.4.7 Grounding Techniques for Signal Referencep. 227
7.4.8 More on Grounding for Sensitive Equipmentp. 230
7.4.9 Summary of Wiring and Grounding Solutionsp. 231
Chapter 8. Monitoring Power Qualityp. 233
8.1 Site Surveyp. 233
8.2 Detailed Power Quality Monitoringp. 234
8.2.1 Choosing a Monitoring Locationp. 234
8.2.2 Disturbance Recording Formp. 235
8.2.3 Disturbance Monitor Connectionsp. 236
8.2.4 Setting Monitor Thresholdsp. 238
8.2.5 Quantities to Measurep. 239
8.2.6 Interpreting the Measurement Resultsp. 239
8.2.7 Finding the Source of a Disturbancep. 240
8.3 Power Quality Measurement Equipmentp. 240
8.3.1 Types of Instrumentsp. 241
8.3.2 Wiring and Grounding Testersp. 242
8.3.3 Multimetersp. 243
8.3.4 Oscilloscopesp. 244
8.3.5 Disturbance Analyzersp. 245
8.3.6 Spectrum Analyzers and Harmonic Analyzersp. 247
8.3.7 Combination Disturbance and Harmonic Analyzersp. 248
8.3.8 Flicker Metersp. 251
8.3.9 Tranducer Requirementsp. 253
8.3.10 Signal Levelsp. 253
8.3.11 Frequency Responsep. 255
8.3.12 Installation Considerationsp. 257
8.3.13 Summary of Transducer Recommendationsp. 259
8.4 Summary of Equipment Capabilitiesp. 260
8.5 Referencesp. 260
8.6 Bibliographyp. 260
Indexp. 261
Go to:Top of Page