Skip to:Content
|
Bottom
Cover image for Electronic and photoelectron spectroscopy : fundamentals and case studies
Title:
Electronic and photoelectron spectroscopy : fundamentals and case studies
Publication Information:
Cambridge : Cambridge University Press, 2005
ISBN:
9780521817370

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004729178 QC454.P48 E44 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

Electronic and photoelectron spectroscopy can provide extraordinarily detailed information on the properties of molecules and are in widespread use in the physical and chemical sciences. Applications extend beyond spectroscopy into important areas such as chemical dynamics, kinetics and atmospheric chemistry. This book aims to provide the reader with a firm grounding of the basic principles and experimental techniques employed. The extensive use of case studies effectively illustrates how spectra are assigned and how information can be extracted, communicating the matter in a compelling and instructive manner. Topics covered include laser-induced fluorescence, resonance-enhanced multiphoton ionization, cavity ringdown and ZEKE spectroscopy. The volume is for advanced undergraduate and graduate students taking courses in spectroscopy and will also be useful to anyone encountering electronic and/or photoelectron spectroscopy during their research.


Reviews 1

Choice Review

This book is designed to be a guide and reference work to electronic and photoelectron spectroscopy. Ellis (Univ. of Leicester, UK), Feher (industry), and Wright (Univ. of Nottingham, UK) aim their book at advanced undergraduate students in chemistry as well as graduate students and researchers in analytical chemistry and allied areas. The book takes a unique approach--instead of just discussing the fundamentals of electron and photoelectron spectroscopy with some general applications, it discusses the latest research in these areas. This can be difficult, as research books do not ordinarily spend much time discussing fundamental principles and tend to be heavy with jargon. Here, the authors take state-of-the-art research reports and dissect and explain them so the reader can appreciate the elegance and value of scientific research. They devote about the first third of the book to a concise, useful discussion of the fundamentals of these two techniques. Topics include the theory of electronic and photoelectronic spectroscopy and major experimental techniques, followed by case studies. For a scientist with a solid math and chemistry background, this is an excellent book on spectroscopy. ^BSumming Up: Highly recommended. Upper-division undergraduates through professionals. J. A. Siegel Indiana University-Purdue University Indianapolis


Table of Contents

Prefacep. xi
List of journal abbreviationsp. xiii
Part I Foundations of electronic and photoelectron spectroscopyp. 1
1 Introductionp. 3
1.1 The basicsp. 3
1.2 Information obtained from electronic and photoelectron spectrap. 5
2 Electronic structurep. 7
2.1 Orbitals: quantum mechanical backgroundp. 7
Referencesp. 11
3 Angular momentum in spectroscopyp. 12
4 Classification of electronic statesp. 15
4.1 Atomsp. 15
4.2 Moleculesp. 17
Referencesp. 23
5 Molecular vibrationsp. 24
5.1 Diatomic moleculesp. 24
5.2 Polyatomic moleculesp. 31
Referencesp. 39
6 Molecular rotationsp. 40
6.1 Diatomic moleculesp. 40
6.2 Polyatomic moleculesp. 43
7 Transition probabilitiesp. 51
7.1 Transition momentsp. 51
7.2 Factorization of the transition momentp. 56
Referencesp. 64
Part II Experimental techniquesp. 65
8 The samplep. 67
8.1 Thermal sourcesp. 67
8.2 Supersonic jetsp. 68
8.3 Matrix isolationp. 72
Referencesp. 74
9 Broadening of spectroscopic linesp. 75
9.1 Natural broadeningp. 75
9.2 Doppler broadeningp. 76
9.3 Pressure broadeningp. 77
10 Lasersp. 78
10.1 Propertiesp. 78
10.2 Basic principlesp. 79
10.3 Ion lasersp. 81
10.4 Nd: YAG laserp. 81
10.5 Excimer laserp. 82
10.6 Dye lasersp. 83
10.7 Titanium:sapphire laserp. 85
10.8 Optical parametric oscillatorsp. 86
Referencesp. 86
11 Optical spectroscopyp. 87
11.1 Conventional absorption/emission spectroscopyp. 87
11.2 Laser-induced fluorescence (LIF) spectroscopyp. 89
11.3 Cavity ringdown (CRD) laser absorption spectroscopyp. 92
11.4 Resonance-enhanced multiphoton ionization (REMPI) spectroscopyp. 94
11.5 Double-resonance spectroscopyp. 96
11.6 Fourier transform (FT) spectroscopyp. 97
Referencesp. 101
12 Photoelectron spectroscopyp. 102
12.1 Conventional ultraviolet photoelectron spectroscopyp. 102
12.2 Synchrotron radiation in photoelectron spectroscopyp. 105
12.3 Negative ion photoelectron spectroscopyp. 105
12.4 Penning ionization electron spectroscopyp. 107
12.5 Zero electron kinetic energy (ZEKE) spectroscopyp. 107
12.6 ZEKE-PFI spectroscopyp. 110
Referencep. 110
Further readingp. 110
Part III Case Studiesp. 111
13 Ultraviolet photoelectron spectrum of COp. 113
13.1 Electronic structures of CO and CO[superscript +]p. 113
13.2 First photoelectron band systemp. 115
13.3 Second photoelectron band systemp. 115
13.4 Third photoelectron band systemp. 116
13.5 Adiabatic and vertical ionization energiesp. 116
13.6 Intensities of photoelectron band systemsp. 117
13.7 Determining bond lengths from Franck-Condon factor calculationsp. 118
Referencesp. 119
14 Photoelectron spectra of CO[subscript 2], OCS, and CS[subscript 2] in a molecular beamp. 120
14.1 First photoelectron band systemp. 123
14.2 Second photoelectron band systemp. 125
14.3 Thrid and fourth photoelectron band systemsp. 126
14.4 Electronic structures: constructing an MO diagram from photoelectron spectrap. 126
Referencesp. 128
15 Photoelectron spectrum of NO[subscript 2 superscript -]p. 129
15.1 The experimentp. 129
15.2 Vibrational structurep. 130
15.3 Vibrational constantsp. 132
15.4 Structure determinationp. 132
15.5 Electron affinity and thermodynamic parametersp. 134
15.6 Electronic structurep. 134
Referencesp. 137
16 Laser-induced fluorescence spectroscopy of C[subscript 3]: rotational structure in the 300 nm systemp. 138
16.1 Electronic structure and selection rulesp. 138
16.2 Assignment and analysis of the rotational structurep. 141
16.3 Band head formationp. 143
Referencesp. 143
17 Photoionization spectrum of diphenylamine: an unusual illustration of the Franck-Condon principlep. 144
Referencesp. 149
18 Vibrational structure in the electronic spectrum of 1,4-benzodioxan: assignment of low frequency modesp. 150
18.1 Ab initio calculationsp. 152
18.2 Assigning the spectrap. 152
Referencesp. 156
19 Vibrationally resolved ultraviolet spectroscopy of propynalp. 157
19.1 Electronic statesp. 159
19.2 Assigning the vibrational structurep. 159
19.3 LIF spectroscopy of jet-cooled propynalp. 161
Referencesp. 164
20 Rotationally resolved laser excitation spectrum of propynalp. 165
20.1 Assigning the rotational structurep. 165
20.2 Perpendicular versus parallel characterp. 167
20.3 Rotational constantsp. 168
20.4 Effects of asymmetryp. 168
Referencesp. 170
21 ZEKE spectroscopy of Al(H[subscript 2]O) and Al(D[subscript 2]O)p. 171
21.1 Experimental detailsp. 172
21.2 Assignment of the vibrationally resolved spectrump. 172
21.3 Dissociation energiesp. 175
21.4 Rotational structurep. 177
21.5 Bonding in Al(H[subscript 2]O)p. 178
Referencesp. 179
22 Rotationally resolved electronic spectroscopy of the NO free radicalp. 180
Referencesp. 186
23 Vibrationally resolved spectroscopy of Mg[superscript +]-rare gas complexesp. 187
23.1 Experimental detailsp. 188
23.2 Preliminaries: electronic statesp. 189
23.3 Photodissociation spectrap. 190
23.4 Spin-orbit couplingp. 190
23.5 Vibrational assignmentp. 193
23.6 Vibrational frequenciesp. 194
23.7 Dissociation energiesp. 195
23.8 B-X systemp. 196
Referencesp. 196
24 Rotationally resolved spectroscopy of Mg[superscript +]-rare gas complexesp. 197
24.1 X[superscript 2 Sigma superscript +] statep. 197
24.2 A[superscript 2 Pi] statep. 199
24.3 Transition energies and selection rulesp. 200
24.4 Photodissociation spectra of Mg[superscript +]-Ne and Mg[superscript +]-Arp. 201
Referencesp. 204
25 Vibronic coupling in benzenep. 205
25.1 The Herzberg-Teller effectp. 208
Referencesp. 209
26 REMPI spectroscopy of chlorobenzenep. 210
26.1 Experimental details and spectrump. 211
26.2 Assignmentp. 212
Referencesp. 215
27 Spectroscopy of the chlorobenzene cationp. 216
27.1 The X[superscript 2]B[subscript 1] statep. 216
27.2 The B statep. 221
Referencesp. 222
28 Cavity ringdown spectroscopy of the [characters not reproducible] transition in O[subscript 2]p. 223
28.1 Experimentalp. 223
28.2 Electronic states of O[subscript 2]p. 225
28.3 Rotational energy levelsp. 226
28.4 Nuclear spin statisticsp. 227
28.5 Spectrum assignmentp. 228
28.6 Why is this strongly forbidden transition observed?p. 229
Referencesp. 229
Appendix A Units in spectroscopyp. 230
A.1 Some fundamental constants and useful unit conversionsp. 231
Appendix B Electronic structure calculationsp. 232
B.1 Preliminariesp. 232
B.2 Hartree-Fock methodp. 234
B.3 Semiempirical methodsp. 237
B.4 Beyond the Hartree-Fock method: allowing for electron correlationp. 238
B.5 Density functional theory (DFT)p. 239
B.6 Software packagesp. 240
B.7 Calculation of molecular propertiesp. 240
Referencesp. 242
Further readingp. 242
Appendix C Coupling of angular momenta: electronic statesp. 243
C.1 Coupling in the general case: the basicsp. 244
C.2 Coupling of angular momenta in atomsp. 244
C.3 Coupling of electronic angular momenta in linear moleculesp. 246
C.4 Non-linear moleculesp. 248
Further readingp. 248
Appendix D The principles of point group symmetry and group theoryp. 249
D.1 Symmetry elements and operationsp. 249
D.2 Point groupsp. 251
D.3 Classes and multiplication tablesp. 252
D.4 The matrix representation of symmetry operationsp. 254
D.5 Character tablesp. 256
D.6 Reducible representations, direct products, and direct product tablesp. 257
D.7 Cyclic and linear groupsp. 259
D.8 Symmetrized and antisymmetrized productsp. 261
Further readingp. 261
Selected character tablesp. 262
Appendix E More on electronic configurations and electronic states: degenerate orbitals and the Pauli principlep. 266
E.1 Atomsp. 266
E.2 Moleculesp. 268
Appendix F Nuclear spin statisticsp. 269
F.1 Fermionic nucleip. 270
F.2 Bosonic nucleip. 270
Appendix G Coupling of angular momenta: Hund's coupling casesp. 272
G.1 Hund's case (a)p. 272
G.2 Hund's case (b)p. 274
G.3 Other Hund's coupling casesp. 276
Further readingp. 276
Appendix H Computational simulation and analysis of rotational structurep. 277
H.1 Calculating rotational energy levelsp. 277
H.2 Calculating transition intensitiesp. 279
H.3 Determining spectroscopic constantsp. 279
Referencesp. 280
Further readingp. 281
Indexp. 282
Go to:Top of Page