Skip to:Content
|
Bottom
Cover image for Brief notes in advanced DSP : fourier analysis with MATLAB
Title:
Brief notes in advanced DSP : fourier analysis with MATLAB
Personal Author:
Publication Information:
Boca Raton : CRC Press, 2009
Physical Description:
xiii, 354 p. : ill. (some col.) ; 25 cm.
ISBN:
9781439801376
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010202975 TK5102.9 G74 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

Based on the authors' research in Fourier analysis, Brief Notes in Advanced DSP: Fourier Analysis with MATLAB® addresses many concepts and applications of digital signal processing (DSP). The included MATLAB® codes illustrate how to apply the ideas in practice.

The book begins with the basic concept of the discrete Fourier transformation and its properties. It then describes lifting schemes, integer transformations, the discrete cosine transform, and the paired transform method for calculating the discrete Hadamard transform. The text also examines the decomposition of the 1D signal by so-called section basis signals as well as new forms of 2D signal/image representation and decomposition by direction signals/images. Focusing on Fourier transform wavelets and Givens-Haar transforms, the last chapter discusses the problem of signal multiresolution.

This book presents numerous interesting problems and concepts of unitary transformations, such as the Fourier, Hadamard, Hartley, Haar, paired, cosine, and new signal-induced transformations. It aids readers in using new forms and methods of signals and images in the frequency and frequency-and-time domains.


Author Notes

Artyom M. Grigoryan, Merughan Grigoryan


Table of Contents

Biographyp. ix
Prefacep. xi
1 Discrete Fourier Transformp. 1
1.1 Properties of the discrete Fourier transformp. 1
1.2 Fourier transform splittingp. 6
1.3 Fast Fourier transformp. 12
1.3.1 Unitary paired transformp. 14
1.3.2 Fast 8-point DFTp. 17
1.3.3 Fast 16-point DFTp. 19
1.4 Codes for the paired FFTp. 25
1.5 Paired and Haar transformsp. 28
1.5.1 Haar functionsp. 29
1.5.2 Codes for the Haar transformp. 33
1.5.3 Comparison with the paired transformp. 34
2 Integer Fourier Transformp. 45
2.1 Reversible integer Fourier transformp. 45
2.1.1 Lifting scheme implementationp. 45
2.2 Lifting schemes for DFTp. 49
2.3 One-point integer transformp. 56
2.3.1 The eight-point integer Fourier transformp. 59
2.3.2 Eight-point inverse integer DFTp. 63
2.3.3 General method of control bitsp. 66
2.3.4 16-point IDFT with 8 and 12 control bitsp. 66
2.3.5 Inverse 16-point integer DFTp. 67
2.3.6 Codes for the forward 16-point integer FFTp. 78
2.4 DFT in vector formp. 84
2.4.1 DFT in real spacep. 85
2.4.2 Integer representation of the DFTp. 90
2.5 Roots of the unitp. 101
2.5.1 Elliptic DFTp. 105
2.6 Codes for the block DFTp. 117
2.7 General elliptic Fourier transformsp. 120
2.7.1 N-block GEFTp. 122
3 Cosine Transformp. 129
3.1 Partitioning the DCTp. 129
3.1.1 4-point DCT of type IVp. 140
3.1.2 Fast four-point type IV DCTp. 142
3.1.3 8-point DCT of type IVp. 145
3.2 Paired algorithm for the N-point DCTp. 151
3.2.1 Paired functionsp. 152
3.2.2 Complexity of the calculationp. 153
3.3 Codes for the paired transformp. 155
3.4 Reversible integer DCTp. 155
3.4.1 Integer four-point DCTsp. 156
3.4.2 Integer eight-point DCTp. 159
3.5 Method of nonlinear equationsp. 160
3.5.1 Calculation of coefficientsp. 162
3.5.2 Error of approximationp. 164
3.6 Canonical representation of the integer DCTp. 168
3.6.1 Reversible two-point transformsp. 168
3.6.2 Reversible two-point DCT of type IIp. 170
3.6.3 Kernel transformp. 171
3.6.4 Reversible two-point IDCT of type IVp. 174
3.6.5 Parameterized two-point IDCTp. 177
3.6.6 Codes for the integer 2-point DCTp. 178
3.6.7 Four-and eight-point IDCTsp. 180
4 Hadamard Transformp. 185
4.1 The Walsh and Hadamard transformp. 185
4.1.1 Codes for the paired DHdTp. 191
4.2 Mixed Hadamard transformationp. 193
4.2.1 Square roots of mixed transformationsp. 196
4.2.2 High degree roots of the DHdTp. 199
4.2.3 S-x transformationp. 201
4.3 Generalized bit-and transformationsp. 203
4.3.1 Projection operatorsp. 211
4.4 T-decomposition of Hadamard matricesp. 212
4.4.1 Square roots of the Hadamard transformationp. 214
4.4.2 Square roots of the identity transformationp. 215
4.4.3 The 4th degree roots of the identity transformationp. 221
4.5 Mixed Fourier transformationsp. 224
4.5.1 Square roots of the Fourier transformationp. 225
4.5.2 Series of Fourier transformsp. 229
4.6 Mixed transformations: Continuous casep. 234
4.6.1 Linear convolutionp. 238
5 Paired Transform-Based Decompositionp. 243
5.1 Decomposition of 1-D signalsp. 243
5.1.1 Section basis signalsp. 249
5.2 2-D paired representationp. 251
5.2.1 Set-frequency characteristicsp. 254
5.2.2 Image reconstruction by projectionsp. 257
5.2.3 Series imagesp. 263
5.2.4 Resolution mapp. 265
5.2.5 A-series linear transformationp. 267
5.2.6 Method of splitting-signals for image enhancementp. 268
5.2.7 Fast methods of ¿-rootingp. 271
5.2.8 Method of series imagesp. 283
6 Fourier Transform and Multiresolutionp. 285
6.1 Fourier transformp. 285
6.1.1 Powers of the Fourier transformp. 289
6.2 Representation by frequency-time waveletsp. 292
6.2.1 Wavelet transformsp. 292
6.2.2 Fourier transform waveletp. 293
6.2.3 Cosine- and sine-wavelet transformsp. 298
6.2.4 B-wavelet transformsp. 302
6.2.5 Hartley transform representationp. 304
6.3 Time-frequency correlation analysisp. 306
6.3.1 Wavelet transform and ¿-resolutionp. 309
6.3.2 Cosine and sine correlation-type transformsp. 311
6.3.3 Paired transform and Fourier functionp. 313
6.4 Givens-Haar transformationsp. 315
6.4.1 Fast transforms with Haar pathp. 320
6.4.2 Experimental resultsp. 324
6.4.3 Characteristics of basic wavesp. 326
6.4.4 Givens-Haar transforms of any orderp. 330
Referencesp. 339
Indexp. 347
Go to:Top of Page