Skip to:Content
|
Bottom
Cover image for Core level spectroscopy of solids
Title:
Core level spectroscopy of solids
Personal Author:
Series:
Advances in condensed matter science ; 6
Publication Information:
Boca Raton : CRC Press, 2008
Physical Description:
xx, 490 p. : ill. ; 25 cm.
ISBN:
9780849390715

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010204706 QC176.8.O6 G76 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Core level spectroscopy has become a powerful tool in the study of electronic states in solids. From fundamental aspects to the most recent developments, Core Level Spectroscopy of Solids presents the theoretical calculations, experimental data, and underlying physics of x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and resonant x-ray emission spectroscopy (RXES).

Starting with the basic aspects of core level spectroscopy, the book explains the many-body effects in XPS and XAS as well as several theories. After forming this foundation, the authors explore more advanced features of XPS, XAS, XMCD, and RXES. Topics discussed include hard XPS, resonant photoemission, spin polarization, electron energy loss spectroscopy (EELS), and resonant inelastic x-ray scattering (RIXS). The authors also use the charge transfer multiplet theory to interpret core level spectroscopy for transition metal and rare earth metal systems.

Pioneers in the theoretical and experimental developments of this field, Frank de Groot and Akio Kotani provide an invaluable treatise on the numerous aspects of core level spectroscopy that involve solids.


Table of Contents

Prefacep. xv
Acknowledgmentsp. xvii
Authorsp. xix
Chapter 1 Introductionp. 1
Chapter 2 Fundamental Aspects of Core Level Spectroscopiesp. 11
2.1 Core Holesp. 11
2.1.1 Creation of Core Holesp. 11
2.1.2 Decay of Core Holesp. 12
2.2 Overview of Core Level Spectroscopiesp. 14
2.2.1 Core Hole Spin-Orbit Splittingp. 14
2.2.2 Core Hole Excitation Spectroscopiesp. 15
2.2.3 Core Hole Decay Spectroscopiesp. 18
2.2.4 Resonant Photoelectron Processesp. 19
2.2.5 Resonant X-Ray Emission Channelsp. 22
2.2.6 Overview of the RXES and NXES Transitionsp. 23
2.3 Interaction of X-Rays with Matterp. 25
2.3.1 Electromagnetic Fieldp. 26
2.3.2 Transition to Quantum Mechanicsp. 26
2.3.3 Interaction Hamiltonianp. 27
2.3.4 Golden Rulep. 27
2.4 Optical Transition Operators and X-Ray Absorption Spectrap. 28
2.4.1 Electric Dipole Transitionsp. 29
2.4.2 Electric Quadrupole Transitionsp. 29
2.4.3 Dipole Selection Rulesp. 29
2.4.4 Transition Probabilities, Cross Sections, and Oscillator Strengthsp. 30
2.4.5 Cross Section, Penetration Depth, and Excitation Frequencyp. 31
2.4.6 X-Ray Attenuation Lengthsp. 32
2.5 Interaction of Electrons with Matterp. 32
2.6 X-Ray Sourcesp. 34
2.6.1 Synchrotron Radiation Sourcesp. 34
2.6.2 X-Ray Beamlines and Monochromatorsp. 35
2.6.3 Other X-Ray Sourcesp. 36
2.7 Electron Sourcesp. 37
Chapter 3 Many-Body Charge-Transfer Effects in XPS and XASp. 39
3.1 Introductionp. 39
3.2 Many-Body Charge-Transfer Effects in XPSp. 40
3.2.1 Basic Description of the XPS Processp. 40
3.3 General Expressions of Many-Body Effectsp. 42
3.3.1 General Descriptionp. 42
3.3.2 Generating Function and Dielectric Responsep. 44
3.3.3 XPS Spectrum and Its Limiting Formsp. 45
3.3.3.1 Slow Modulation Limitp. 47
3.3.3.2 Rapid Modulation Limitp. 47
3.4 General Effects in XPS Spectrap. 47
3.4.1 Screening by Free-Electron-Like Conduction Electronsp. 47
3.4.2 Screening by Lattice Relaxation Effectsp. 49
3.4.3 Shake-Up Satellitesp. 50
3.4.4 Lifetime Effectsp. 50
3.4.4.1 Auger Transitionp. 50
3.4.4.2 Radiative Transitionp. 51
3.5 Typical Examples of XPS Spectrap. 52
3.5.1 Simple Metalsp. 52
3.5.2 La Metalp. 56
3.5.2.1 Final State of Type (A)p. 59
3.5.2.2 Final State of Type (B)p. 60
3.5.3 Mixed Valence State in Ce Intermetallic Compoundsp. 62
3.5.4 Insulating Mixed Valence Ce Compoundsp. 67
3.5.5 Transition Metal Compoundsp. 71
3.5.5.1 Modelp. 71
3.5.5.2 Simplified Analysisp. 72
3.5.5.3 Case A: [Delta subscript f] > 0 ([Delta] > U[subscript dc])p. 74
3.5.5.4 Case B: [Delta subscript f] [less than or equal] 0 ([Delta] [less than or equal] U[subscript dc])p. 74
3.6 Many-Body Charge-Transfer Effects in XASp. 76
3.6.1 General Expressions of Many-Body Effectsp. 76
3.6.2 XAS in Simple Metalsp. 76
3.6.3 XAS in La Metalp. 78
3.6.3.1 Case A: [epsilon subscript f]p. 79
3.6.3.2 Case B: [epsilon subscript f] > [epsilon subscript F]p. 80
3.6.4 Ce 3d XAS of Mixed Valence Ce Compoundsp. 81
3.6.5 Ce L[subscript 3] XASp. 83
3.6.6 XAS in Transition Metal Compoundsp. 87
3.7 Comparison of XPS and XASp. 89
Chapter 4 Charge Transfer Multiplet Theoryp. 93
4.1 Introductionp. 93
4.2 Atomic Multiplet Theoryp. 95
4.2.1 Term Symbolsp. 96
4.2.2 Some Simple Coupling Schemesp. 98
4.2.3 Term Symbols of d-Electronsp. 101
4.2.4 Matrix Elementsp. 105
4.2.5 Energy Levels of Two d-Electronsp. 107
4.2.6 More Than Two Electronsp. 108
4.2.7 Matrix Elements of the 2p[superscript 3] Configurationp. 109
4.2.8 Hund's Rulesp. 110
4.2.9 Final State Effects of Atomic Multipletsp. 111
4.3 Ligand Field Multiplet Theoryp. 115
4.3.1 Ligand Field Multiplet Hamiltonianp. 116
4.3.2 Cubic Crystal Fieldsp. 117
4.3.3 Definitions of the Crystal Field Parametersp. 119
4.3.4 Energies of the 3d[superscript n] Configurationsp. 120
4.3.5 Symmetry Effects in D[subscript 4h] Symmetryp. 124
4.3.6 Effect of the 3d Spin-Orbit Couplingp. 125
4.3.7 Consequences of Reduced Symmetryp. 126
4.3.8 3d[superscript 0] Systems in Octahedral Symmetryp. 126
4.3.9 Ab Initio LFM Calculationsp. 132
4.4 Charge Transfer Multiplet Theoryp. 133
4.4.1 Initial State Effectsp. 134
4.4.2 Final State Effectsp. 137
4.4.3 XAS Spectrum with Charge-Transfer Effectsp. 138
4.4.4 Small Charge-Transfer Satellites in 2p XASp. 140
4.4.5 Large Charge-Transfer Satellites in 2p XPSp. 141
4.4.5.1 3d[superscript 0] Compoundsp. 142
4.4.5.2 3d[superscript 8] Compoundsp. 143
Chapter 5 X-Ray Photoemission Spectroscopyp. 145
5.1 Introductionp. 145
5.2 Experimental Aspectsp. 146
5.3 XPS of TM Compoundsp. 146
5.3.1 2p XPSp. 146
5.3.2 Zaanen-Sawatzky-Allen Diagramp. 152
5.3.3 2p XPS in Early TM Systemsp. 154
5.3.4 Effect of Multiplet Coupling on [Delta] and U[subscript dd]p. 158
5.3.5 3s XPSp. 160
5.3.6 3p XPSp. 164
5.4 XPS of RE Compoundsp. 165
5.4.1 Simplified Analysis for RE Oxidesp. 165
5.4.2 Application of Charge-Transfer Multiplet Theoryp. 169
5.5 Resonant Photoemission Spectroscopyp. 176
5.5.1 Fundamental Aspects of RPESp. 177
5.5.2 RPES in Ni Metal and TM Compoundsp. 180
5.5.2.1 3p RPES in Ni Metalp. 180
5.5.2.2 2p RPES in TM Compoundsp. 182
5.5.2.3 3p RPES in NiOp. 185
5.5.3 3d and 4d RPES of Ce Compoundsp. 185
5.5.4 Resonant XPSp. 187
5.5.5 Resonant Auger Electron Spectroscopyp. 188
5.5.6 Reducing the Lifetime Broadening in XASp. 191
5.5.7 EQ and ED Excitations in the Pre-Edge of Ti 1s XAS of TiO[subscript 2]p. 191
5.6 Hard X-Ray Photoemission Spectroscopyp. 197
5.6.1 2p HAXPS of Cupratesp. 197
5.6.2 2p HAXPS of V[subscript 2]O[subscript 3] and La[subscript 1-x]Sr[subscript x]MnO[subscript 3]p. 198
5.6.3 Ce Compounds: Surface/Bulk Sensitivityp. 199
5.6.4 Resonant HAXPS of Ce Compoundsp. 202
5.7 Resonant Inverse Photoemission Spectroscopyp. 205
5.8 Nonlocal Screening Effect in XPSp. 212
5.9 Auger Photoemission Coincidence Spectroscopyp. 218
5.10 Spin-Polarization and Magnetic Dichroism in XPSp. 221
5.10.1 Spin-Polarized Photoemissionp. 221
5.10.2 Spin-Polarized Circular Dichroic Resonant Photoemissionp. 221
Chapter 6 X-Ray Absorption Spectroscopyp. 225
6.1 Basics of X-Ray Absorption Spectroscopyp. 225
6.1.1 Metal L[subscript 2,3] Edgesp. 228
6.2 Experimental Aspectsp. 228
6.2.1 Transmission Detectionp. 229
6.2.2 Energy Dispersive X-Ray Absorptionp. 229
6.2.3 Fluorescence Yieldp. 229
6.2.4 Self-Absorption Effects in Fluorescence Yield Detectionp. 230
6.2.5 Nonlinear Decay Ratios and Distortions in Fluorescence Yield Spectrap. 230
6.2.6 Partial Fluorescence Yieldp. 230
6.2.7 Electron Yieldp. 231
6.2.8 Partial Electron Yieldp. 231
6.2.9 Ion Yieldp. 232
6.2.10 Detection of an EELS Spectrump. 232
6.2.11 Low-Energy EELS Experimentsp. 233
6.2.12 Space: X-Ray Spectromicroscopy and TEM-EELSp. 233
6.2.13 Time-Resolved X-Ray Absorptionp. 234
6.2.14 Extreme Conditionsp. 235
6.3 L[subscript 2,3] Edges of 3d TM Systemsp. 235
6.3.1 3d[superscript 0] Systemsp. 236
6.3.2 3d[superscript 1] Systemsp. 237
6.3.2.1 VO[subscript 2] and LaTiO[subscript 3]p. 237
6.3.3 3d[superscript 2] Systemsp. 237
6.3.4 3d[superscript 3] Systemsp. 238
6.3.5 3d[superscript 4] Systemsp. 239
6.3.5.1 LaMnO[subscript 3]p. 240
6.3.5.2 Mixed Spin Ground State in LiMnO[subscript 2]p. 240
6.3.6 3d[superscript 5] Systemsp. 241
6.3.6.1 MnOp. 241
6.3.6.2 Fe[subscript 2]O[subscript 3]p. 242
6.3.6.3 Fe[superscript 3+](tacn)[subscript 2]p. 243
6.3.6.4 Fe[superscript 3+](CN)[subscript 6]p. 243
6.3.6.5 Intermediate Spin State of SrCoO[subscript 3]p. 244
6.3.7 3d[superscript 6] Systemsp. 245
6.3.7.1 Effect of 3d Spin-Orbit Coupling in Fe[subscript 2]SiO[subscript 4]p. 246
6.3.7.2 Co[superscript 3+] Oxidesp. 247
6.3.8 3d[superscript 7] Systemsp. 248
6.3.8.1 Effects of 3d Spin-Orbit Coupling on the Ground State of Co[superscript 2+]p. 248
6.3.8.2 Mixed Spin Ground State in PrNiO[subscript 3]p. 249
6.3.9 3d[superscript 8] Systemsp. 251
6.3.9.1 NiOp. 251
6.3.9.2 High-Spin and Low-Spin Ni[superscript 2+] and Cu[superscript 3+] Systemsp. 251
6.3.10 3d[superscript 9] Systemsp. 253
6.4 Other X-Ray Absorption Spectra of the 3d TM Systemsp. 254
6.4.1 TM M[subscript 2,3] Edgesp. 254
6.4.2 TM M[subscript 1] Edgesp. 255
6.4.3 TM K Edgesp. 255
6.4.4 Ligand K Edgesp. 260
6.4.4.1 Oxygen K Edges of High T[subscript c] Copper Oxidesp. 264
6.4.5 Soft X-Ray K Edges by X-Ray Raman Spectroscopyp. 264
6.4.5.1 Modifying the Selection Rulesp. 265
6.5 X-Ray Absorption Spectra of the 4d and 5d TM Systemsp. 265
6.5.1 L[subscript 2,3] Edges of 4d TM Systemsp. 266
6.5.2 Picosecond Time-Resolved 2p XAS Spectra of [Ru(bpy) subscript 3 superscript 2+]p. 268
6.5.3 Higher Valent Ruthenium Compoundsp. 269
6.5.4 Pd L Edges and the Number of 4d Holes in Pd Metalp. 270
6.5.5 X-Ray Absorption Spectra of the 5d Transition Metalsp. 271
6.6 X-Ray Absorption Spectra of the 4f RE and 5f Actinide Systemsp. 272
6.6.1 M[subscript 4,5] Edges of Rare Earthsp. 273
6.6.1.1 M[subscript 4,5] Edge of Tmp. 274
6.6.1.2 M[subscript 4,5] Edge of La[superscript 3+]p. 277
6.6.1.3 M[subscript 4,5] Edge of CeO[subscript 2]p. 278
6.6.2 N[subscript 4,5] Edges of Rare Earthsp. 278
6.6.3 L[subscript 2,3] Edges of Rare Earthsp. 281
6.6.4 O[subscript 4,5] Edges of Actinidesp. 282
6.6.5 M[subscript 4,5] Edges of Actinidesp. 282
Chapter 7 X-Ray Magnetic Circular Dichroismp. 287
7.1 Introductionp. 287
7.2 XMCD Effects in the L[subscript 2,3] Edges of TM Ions and Compoundsp. 288
7.2.1 Atomic Single Electron Modelp. 288
7.2.2 XMCD Effects in Ni[superscript 2+]p. 293
7.2.3 XMCD of CrO[subscript 2]p. 297
7.2.4 Magnetic X-Ray Linear Dichroismp. 297
7.2.5 Orientation Dependence of XMCD and XMLD Effectsp. 298
7.2.6 XMLD for Doped LaMnO[subscript 3] Systemsp. 299
7.3 Sum Rulesp. 299
7.3.1 Sum Rules for Orbital and Spin Momentsp. 299
7.3.2 Application of the Sum Rules to Fe and Co Metalsp. 302
7.3.3 Application of the Sum Rules to Au/Co-Nanocluster/Au Systemsp. 304
7.3.4 Limitations of the Sum Rulesp. 308
7.3.5 Theoretical Simulations of the Spin Sum Rulep. 309
7.4 XMCD Effects in the K Edges of Transition Metalsp. 310
7.4.1 X-Ray Natural Circular Dichroism and X-Ray Optical Activityp. 311
7.5 XMCD Effects in the M Edges of Rare Earthsp. 312
7.5.1 XMCD and XMLD Effects from Atomic Multipletsp. 312
7.5.2 Temperature Effects on the XMCD and XMLDp. 314
7.6 XMCD Effects in the L Edges of Rare Earth Systemsp. 314
7.6.1 Effects of 4f5d Exchange Interactionp. 315
7.6.2 Contribution of Electric Quadrupole Transitionp. 319
7.6.3 Effect of Hybridization between RE 5d and TM 3d Statesp. 319
7.6.4 XMCD at L Edges of R[subscript 2]Fe[subscript 14]B (R = La-Lu)p. 320
7.6.5 Mixed Valence Compound CeFe[subscript 2]p. 324
7.6.6 Multielectron Excitationsp. 328
7.7 Applications of XMCDp. 329
7.7.1 Magnetic Oxidesp. 329
7.7.2 Thin Magnetic (Multi)layers, Interface, and Surface Effectsp. 330
7.7.3 Impurities, Adsorbates, and Metal Chainsp. 332
7.7.4 Magnetic Nanoparticles and Catalyst Materialsp. 333
7.7.5 Molecular Magnetsp. 333
7.7.6 Metal Centers in Proteinsp. 334
Chapter 8 Resonant X-Ray Emission Spectroscopyp. 335
8.1 Introductionp. 335
8.1.1 Experimental Aspects of XES (RXES and NXES)p. 337
8.1.1.1 Detectors for Soft X-Ray XESp. 338
8.1.1.2 Detectors for Hard X-Ray XESp. 338
8.1.1.3 X-Ray Raman Allows Soft X-Ray XAS under Extreme Conditionsp. 338
8.1.2 Basic Description and Some Theoretical Aspectsp. 338
8.2 Rare Earth Compoundsp. 343
8.2.1 Effect of Intra-Atomic Multiplet Couplingp. 343
8.2.2 Effect of Interatomic Hybridization in CeO[subscript 2] and PrO[subscript 2]p. 348
8.2.3 Metallic Ce Compounds with Mixed-Valence Characterp. 351
8.2.4 Kondo Resonance in Yb Compoundsp. 354
8.2.5 Dy 2p3d RXES Detection of the 2p4f EQ Excitationp. 357
8.2.6 EQ Excitations in Light Rare Earth Elementsp. 360
8.3 High T[subscript c] Cuprates and Related Materialsp. 363
8.3.1 Cu 2p3d RXESp. 363
8.3.2 Cu 1s4p RXESp. 367
8.3.3 Cu 1s2p RXESp. 373
8.3.4 O 1s2p RXESp. 377
8.4 Nickel and Cobalt Compoundsp. 380
8.4.1 Ni 2p3d RXES in NiO: Charge Transfer Excitationsp. 380
8.4.2 Ni 2p3d RXES in NiO: dd Excitationsp. 384
8.4.3 Ni 2p3d RXES in NiO: Spin-Flip Excitationsp. 386
8.4.4 Ni 1s4p RXES of NiO: Pressure Dependencep. 387
8.4.5 Co 2p3d RXES in CoO and Other Co Compoundsp. 389
8.4.6 Co 1s2p RXES of CoO: Effect of Resolutionp. 389
8.4.7 Co 1s2p RXES: Nonlocal Dipole Transitionsp. 391
8.5 Iron and Manganese Compoundsp. 393
8.5.1 Fe 1s2p RXES of Iron Oxides: 2D RXES Imagesp. 393
8.5.2 HERFD-XAS of Iron Oxidesp. 395
8.5.3 Fe 2p XAS Spectra Measured at the Fe K Edgep. 397
8.5.4 Valence Selective XASp. 397
8.5.5 Mn 2p3d RXES of MnOp. 399
8.5.6 Mn 2p3d RXES: Interplay of dd and Charge Transfer Excitationsp. 402
8.5.7 Mn 1s4p RXES of LaMnO[subscript 3]p. 405
8.5.8 Mn and Ni 1s3p XES: Chemical Sensitivityp. 406
8.5.9 Mn 1s3p XES: K Capture Versus X-Ray Ionizationp. 408
8.5.9.1 Atomic Multiplet Calculationp. 409
8.5.9.2 LFM Calculationp. 410
8.5.9.3 Charge Transfer Multiplet Calculationp. 410
8.5.9.4 Coherent Calculation of Mn 1s3p NXES Spectrap. 411
8.6 Early Transition Metal Compoundsp. 412
8.6.1 Ca 2p3s RXES in CaF[subscript 2]p. 413
8.6.2 Ti 2p3d RXES of TiO[subscript 2]: Polarization Dependencep. 415
8.6.3 Sc 2p3d RXES of the ScF[subscript 3], ScCl[subscript 3], and ScBr[subscript 3]p. 420
8.6.4 TM 2p3d RXES of d[superscript n] (n = 1, 2, 3) Systemsp. 420
8.6.5 V 2p3d RXES of Vanadium Oxidesp. 423
8.7 Electron Spin States Detected by RXES and NXESp. 423
8.7.1 Local Spin-Selective Excitation Spectrap. 423
8.7.2 Spin-Dependent TM 1s3p NXES Spectrap. 425
8.7.3 TM 1s3p NXES and Spin-Transitionsp. 426
8.7.4 Local-Spin Selective XAS and XMCDp. 429
8.8 MCD in RXES of Ferromagnetic Systemsp. 429
8.8.1 Longitudinal and Transverse Geometries in MCD-RXESp. 429
8.8.2 MCD-RXES in LG of CeFe[subscript 2]p. 433
8.8.3 Experiments and Theory of MCD-RXES in TGp. 435
Appendix A Precise Derivation of XPS Formulap. 439
Appendix B Derivation of Equation 3.88 in Chapter 3p. 443
Appendix C Fundamental Tensor Theoryp. 447
Appendix D Derivation of the Orbital Moment Sum Rulep. 451
Appendix E Theoretical Test of the Spin Sum Rulep. 453
Appendix F Calculations of XAS Spectra with Single Electron Excitation Modelsp. 457
Referencesp. 463
Indexp. 483
Go to:Top of Page