Skip to:Content
|
Bottom
Cover image for Atomic force microscopy for biologists
Title:
Atomic force microscopy for biologists
Personal Author:
Edition:
2nd ed.
Publication Information:
London, ENK : Imperial College Press, 2010.
Physical Description:
xiii, 406 p. : ill. ; 24 cm.
ISBN:
9781848164673

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010235750 QH212 .A78 M67 2010 Open Access Book Book
Searching...

On Order

Summary

Summary

Atomic force microscopy (AFM) is part of a range of emerging microscopic methods for biologists which offer the magnification range of both the light and electron microscope, but allow imaging under the 'natural' conditions usually associated with the light microscope. To biologists, AFM offers the prospect of high resolution images of biological material, images of molecules and their interactions even under physiological conditions, and the study of molecular processes in living systems. This book provides a realistic appreciation of the advantages and limitations of the technique and the present and future potential for improving the understanding of biological systems.The second edition of this bestseller has been updated to describe the latest developments in this exciting field, including a brand new chapter on force spectroscopy. The dramatic developments of AFM over the past ten years from a simple imaging tool to the multi-faceted, nano-manipulating technique that it is today are conveyed in a lively and informative narrative, which provides essential reading for students and experienced researchers alike.


Table of Contents

Acknowledgementsp. xiii
Chapter 1 An Introductionp. 1
Chapter 2 Apparatusp. 5
2.1 The atomic force microscopep. 5
2.2 Piezoelectric scannersp. 7
2.3 Probes and cantileversp. 10
2.3.1 Cantilever geometryp. 10
2.3.2 Tip shapep. 12
2.3.3 Tip functionalityp. 14
2.4 Sample holdersp. 14
2.4.1 Liquid cellsp. 15
2.5 Detection methodsp. 16
2.5.1 Optical detectors: laser beam deflectionp. 16
2.5.2 Optical detectors: interferometryp. 18
2.5.3 Electrical detectors: electron tunnellingp. 19
2.5.4 Electrical detectors: capacitancep. 20
2.5.5 Electrical detectors: piezoelectric cantileversp. 21
2.6 Control systemsp. 21
2.6.1 AFM electronicsp. 21
2.6.2 Operation of the electronicsp. 24
2.6.3 Feedback control loopsp. 25
2.6.4 Design limitationsp. 27
2.6.5 Enhancing the performance of large scannersp. 28
2.7 Vibration isolation: thermal and mechanicalp. 28
2.8 Calibrationp. 30
2.8.1 Piezoelectric scanner non-linearityp. 30
2.8.2 Tip related factors: convolutionp. 31
2.8.3 Calibration standardsp. 32
2.8.4 Tips for scanning a calibration specimenp. 33
2.9 Integrated AFMsp. 34
2.9.1 Combined AFM-light microscope (AFM-LM)p. 34
2.9.2 'Submarine' AFM - the combined AFM-Langmuir Troughp. 35
2.9.3 Combined AFM-surface plasmon resonance (AFM-SPR)p. 36
2.9.4 Cryo-AFMp. 36
Chapter 3 Basic Principlesp. 41
3.1 Forcesp. 41
3.1.1 The Van der Waals force and force-distance curvesp. 41
3.1.2 The electrostatic forcep. 44
3.1.3 Capillary and adhesive forcesp. 44
3.1.4 Double layer forcesp. 46
3.2 Imaging modesp. 47
3.2.1 Contact dc modep. 47
3.2.2 Ac modes: Tapping and non-contactp. 47
3.2.3 Deflection modep. 54
3.3 Image typesp. 55
3.3.1 Topographyp. 55
3.3.2 Frictional forcep. 56
3.3.3 Phasep. 56
3.4 Substratesp. 58
3.4.1 Micap. 58
3.4.2 Glassp. 58
3.4.3 Graphitep. 58
3.5 Common problemsp. 59
3.5.1 Thermal driftp. 59
3.5.2 Multiple tip effectsp. 59
3.5.3 The 'pool' artifactp. 61
3.5.4 Optical interference on highly reflective samplesp. 61
3.5.5 Sample roughnessp. 62
3.5.6 Sample mobilityp. 63
3.5.7 Imaging under liquidp. 64
3.6 Getting startedp. 65
3.6.1 DNAp. 65
3.6.2 Troublesome large samplesp. 68
3.7 Image optimisationp. 70
3.7.1 Grey levels and colour tablesp. 70
3.7.2 Brightness and contrastp. 71
3.7.3 High and low pass filteringp. 71
3.7.4 Normalisation and plane fittingp. 71
3.7.5 Despikep. 71
3.7.6 Fourier filteringp. 72
3.7.7 Correlation averagingp. 73
3.7.8 Stereographs and anaglyphsp. 73
3.7.9 Do your homework!p. 74
Chapter 4 Macromoleculesp. 76
4.1 Imaging methodsp. 76
4.1.1 Tip adhesion, molecular damage and displacementp. 76
4.1.2 Depositing macromolecules onto substratesp. 77
4.1.3 Metal coated samplesp. 78
4.1.4 Imaging in airp. 79
4.1.5 Imaging under non-aqueous liquidsp. 80
4.1.6 Binding molecules to the substratep. 81
4.1.7 Imaging under water or buffersp. 85
4.2 Nucleic acids: DNAp. 86
4.2.1 Imaging DNAp. 87
4.2.2 DNA conformation, size and shapep. 88
4.2.3 DNA-protein interactionsp. 94
4.2.4 Location and mapping of specific sitesp. 99
4.2.5 Chromosomesp. 102
4.3 Nucleic acids: RNAp. 105
4.4 Polysaccharidesp. 106
4.4.1 Imaging polysaccharidesp. 107
4.4.2 Size, shape, structure and conformationp. 108
4.4.3 Aggregates, networks and gelsp. 117
4.4.4 Cellulose, plant cell walls and starchp. 122
4.4.5 Proteoglycans and mucinsp. 128
4.5 Proteinsp. 130
4.5.1 Globular proteinsp. 131
4.5.2 Antibodiesp. 136
4.5.3 Fibrous proteinsp. 139
Chapter 5 Interfacial Systemsp. 181
5.1 Introduction to interfacesp. 181
5.1.1 Surface activityp. 181
5.1.2 AFM of interracial systemsp. 184
5.1.3 The Langmuir troughp. 185
5.1.4 Langmuir-Blodgett film transferp. 186
5.2 Sample preparationp. 188
5.2.1 Cleaning protocols: glassware and troughp. 188
5.2.2 Substratesp. 189
5.2.3 Performing the dipp. 191
5.3 Phospholipidsp. 192
5.3.1 Early AFM studies of phospholipid filmsp. 193
5.3.2 Modification of phospholipid bilayers with the AFMp. 194
5.3.3 Studying intrinsic bilayer properties by AFMp. 196
5.3.4 Ripple phases in phospholipid bilayersp. 199
5.3.5 Mixed phospholipid filmsp. 202
5.3.6 Effect of supporting layersp. 205
5.3.7 Dynamic processes of phopholipid layersp. 208
5.4 Liposomes and intact vesiclesp. 211
5.5 Lipid-protein mixed filmsp. 213
5.5.1 High resolution studies of phospholipid bilayersp. 217
5.6 Miscellaneous lipid films/surfactant filmsp. 219
5.7 Interfacial protein filmsp. 219
5.7.1 Specific precautionsp. 220
5.7.2 AFM studies of interfacial protein filmsp. 222
Chapter 6p. 231
6.1 Three-dimensional crystalsp. 231
6.1.1 Crystalline cellulosep. 231
6.1.2 Protein crystalsp. 232
6.1.3 Nucleic acid crystalsp. 235
6.1.4 Viruses and virus crystalsp. 236
6.2 Two dimensional protein crystals: an introductionp. 240
6.2.1 What does AFM have to offer?p. 241
6.2.2 Sample preparation: membrane proteinsp. 243
6.2.3 Sample preparation: soluble proteinsp. 244
6.3 AFM studies of 2D membrane protein crystalsp. 246
6.3.1 Purple membrane (bacteriorhodopsin)p. 246
6.3.2 Gap junctionsp. 249
6.3.3 Photosynthelic protein membranesp. 252
6.3.4 ATPase in kidney membranesp. 252
6.3.5 OmpF porinp. 253
6.3.6 Bacterial Slayersp. 254
6.3.7 Bacteriophage Ø29 head-tail connectorp. 257
6.3.8 AFM imaging of membrane dynamicsp. 259
6.3.9 Force spectroscopy of membrane proteinsp. 261
6.3.10 Gas vesicle proteinp. 261
6.4 AFM studies of 2D crystals of soluble proteinsp. 262
6.4.1 Imaging conditionsp. 264
6.4.2 Electrostatic considerationsp. 266
Chapter 7 Cells, Tissue and Biomineralsp. 276
7.1 Imaging methodsp. 276
7.1.1 Sample preparationp. 277
7.1.2 Force mapping and mechanical measurementsp. 278
7.2 Microbial cells: bacteria, spores and yeastsp. 290
7.2.1 Bacteriap. 290
7.2.2 Yeastsp. 300
7.3 Blood cellsp. 302
7.3.1 Erythrocytesp. 302
7.3.2 Leukocytes and lymphocytesp. 304
7.3.3 Plateletsp. 304
7.4 Neurons and Glial cellsp. 306
7.5 Epithelial cellsp. 307
7.6 Non-confluent renal cellsp. 309
7.7 Endothelial cellsp. 311
7.8 Cardiocytesp. 313
7.9 Other mammalian cellsp. 314
7.10 Plant cellsp. 317
7.11 Tissuep. 321
7.11.1 Embedded sectionsp. 321
7.11.2 Embedment-free sectionsp. 322
7.11.3 Hydrated sectionsp. 323
7.11.4 Freeze-fracture replicasp. 324
7.11.5 Immunolabellingp. 324
7.12 Biomineralsp. 325
7.12.1 Bone, tendon and cartilagep. 325
7.12.2 Teethp. 327
7.12.3 Shellsp. 328
Chapter 8 Other Probe Microscopesp. 342
8.1 Overviewp. 342
8.2 Scanning tunnelling microscope (STM)p. 342
8.3 Scanning near-field optical microscope (SNOM)p. 345
8.4 Scanning ion conductance microscope (SICM)p. 347
8.5 Scanning thermal microscope (SThM)p. 349
8.6 Optical tweezers and the photonic force microscope (PFM)p. 351
Chapter 9 Force Spectroscopyp. 356
9.1 Force measurement with the AFMp. 356
9.2 First steps in force spectroscopy: from raw data to force-distance curvesp. 357
9.2.1 Quantifying cantilever displacementp. 357
9.2.2 Determining cantilever spring constantsp. 359
9.2.3 Anatomy of a force-distance curvep. 362
9.3 Pulling methodsp. 364
9.3.1 Intrinsic elastic properties of moleculesp. 364
9.3.2 Molecular recognition force spectroscopyp. 369
9.3.3 Chemical force microscopy (CFM)p. 373
9.4p. 374
9.4.1 Colloidal probe microscopy (CPM)p. 374
9.4.2 How to make a colloid probe cantilever assemblyp. 377
9.4.3 Deformation and indentation methodsp. 380
9.5 Analysis of force-distance curvesp. 381
9.5.1 Worm-like chain and freely jointed chain modelsp. 382
9.5.2 Molecular interactionsp. 384
9.5.3 Deformation analysisp. 387
9.5.4 Adhesive force at pull-offp. 388
9.5.5 Elastic indentation depth, ¿, and contact radius, a, during deformationp. 388
9.5.6 Contact radius at zero loadp. 389
9.5.7 Colloidal forcesp. 389
SPM Booksp. 397
Indexp. 399
Go to:Top of Page