Skip to:Content
|
Bottom
Cover image for Introduction to nitride semiconductor blue lasers and light emitting diodes
Title:
Introduction to nitride semiconductor blue lasers and light emitting diodes
Publication Information:
London : Taylor & Francis, 2000
ISBN:
9780748408368

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004922138 TA1700 I57 2000 Open Access Book Book
Searching...

On Order

Summary

Summary

The "blue laser" is an exciting new device used in physics. The potential is now being recognized for its development into a commercial lighting system using about a tenth of the power and with a thousand times the operating lifetime of a comparable conventional system. This comprehensive work introduces the subject at a level suitable for graduate students. It covers the basics physics of light emitting diodes (LEDs) and laser diodes (LDs) based on gallium nitride and related nitride semiconductors, and gives an outline of their structural, transport and optical properties, and the relevant device physics. It begins with the fundamentals, and covers both theory and experiment, as well as an examination of actual and potential device applications. Shuji Nakamura and Nichia Chemicals Industries made the initial breakthroughs in the field, and these have revealed that LEDs and LDs are a sophisticated physical phenomenon and a commercial reality.


Table of Contents

Steven P. DenBaarsTakeshi Uenoyama and Masakatsu SuzukiChris G. Van de WalleFernando A. PonceShigefusa F. Chichibu and Yoichi Kawakami and Takayuki SotaMarek Osinski and Daniel L. BartonShuji Nakamura
1. Basics Physics and Materials Technology of GaN LEDs and LDsp. 1
1.1 Introductionp. 1
1.1.1 Historical Evolution of LED Technologyp. 1
1.2 Basic Physics of LEDs: Injection Luminescencep. 3
1.2.1 Direct and Indirect Band-Gap Materialp. 4
1.2.2 Radiative Recombinationp. 5
1.2.3 External Quantum Efficiencyp. 7
1.2.4 Luminous Efficiencyp. 8
1.2.5 Injection Efficiencyp. 9
1.2.6 Heterojunction vs. Homojunction LED Materialsp. 10
1.2.7 Quantum Well LEDsp. 12
1.3 LED Materials Selectionp. 12
1.3.1 Energy Band Structure/Lattice Constantsp. 12
1.3.2 GaN Physical Propertiesp. 13
1.3.3 GaN Based LED Structuresp. 13
1.4 Crystal Growthp. 15
1.4.1 MOCVD Growthp. 15
1.4.2 MOCVD Systems for Productionp. 17
1.4.3 Molecular Beam Epitaxy (MBE)p. 18
1.4.4 Chloride Vapor Phase Epitaxyp. 19
1.5 Group-III Nitride Materials Growth Issuesp. 20
1.5.1 Substratesp. 20
1.5.2 Nucleation Layer Technologyp. 21
1.5.3 Growth and Doping of GaNp. 21
1.5.4 Growth of AlGaN and AlGaN/GaN Heterostructuresp. 22
1.5.5 Growth of InGaN and InGaN/GaN Heterostructuresp. 23
1.6 Conclusionsp. 24
1.7 Referencesp. 25
2. Theoretical Analysis of Optical Gain Spectrap. 29
2.1 Introductionp. 29
2.2 Optical Gains Spectra by Many-Body Approachp. 30
2.2.1 Linear Response Theoryp. 30
2.2.2 Screening Effectsp. 32
2.2.3 Self-Energies of Electron Gasp. 34
2.2.4 Coulomb Enhancementp. 36
2.3 Electronic Band Structuresp. 39
2.3.1 Electronic Band Structures of Bulk GaN and AlNp. 39
2.3.2 Strain Effect on Electronic Band Structuresp. 42
2.3.3 k.p Theory for Wurtzitep. 43
2.3.4 Physical Parametersp. 44
2.3.5 Subband Structures of GaN/AlGaN Quantum Wellsp. 47
2.3.6 Subband in Wurtzite Quantum Wellsp. 47
2.4 Optical Gain Spectra of III-V Nitrides LD Structuresp. 49
2.4.1 Free Carrier Modelp. 49
2.4.2 Coulomb Enhancement (Excitonic Effects) in the Optical Gainp. 56
2.4.3 Optical Gain with Localized Statesp. 58
2.5 Conclusionsp. 63
2.6 Referencesp. 64
3. Electrical Conductivity Controlp. 67
3.1 Dopingp. 67
3.1.1 Theory of Native Defects and Impuritiesp. 68
3.1.2 n-type Dopingp. 75
3.1.3 p-type Dopingp. 81
3.2 Band Offsetsp. 90
3.2.1 Theory of Band Offsets at Nitride Interfacesp. 91
3.2.2 Experimental Results for Band Offsetsp. 95
3.2.3 Discussionp. 96
3.3 Acknowledgmentsp. 97
3.4 Referencesp. 97
4. Crystal Defects and Device Performance in LEDs and LDsp. 105
4.1 CrystalGrowth and Microstructurep. 105
4.1.1 Lattice Structure of the Nitride Semiconductorsp. 106
4.1.2 Thin Film Epitaxy and Substratesp. 107
4.2 Epitaxy on SiC Substratesp. 109
4.3 Epitaxy on Sapphire Substratesp. 111
4.3.1 AlN as a Buffer Layerp. 113
4.3.2 GaN as a Buffer Layerp. 114
4.4 Homoepitaxial Growth of GaNp. 115
4.5 Defect Microstructurein LEDs and LDsp. 116
4.5.1 Large Defect Densities in High Performance Materialsp. 117
4.5.2 Columnar Structure of GaN on Sapphirep. 119
4.5.3 Tilt Boundariesp. 121
4.5.4 Twist Boundariesp. 122
4.6 Polarity and Electronic Propertiesp. 123
4.7 The Nature of the Dislocationp. 126
4.7.1 Determination of the Burgers Vectorp. 126
4.7.2 Nanopipes and Inversion Domainsp. 129
4.8 Spatial Variation of Luminescencep. 132
4.8.1 Undoped Materialp. 132
4.8.2 Doped Materialsp. 135
4.9 Microscopic Properties of In[subscript x]Ga[subscript 1-x]N Quantum Wellsp. 136
4.9.1 The Nature of the InGaN/GaN Interfacep. 137
4.9.2 Microstructure of Quantum Wellsp. 139
4.9.3 Spatial Variation of the luminescence of In[subscript x]Ga[subscript 1-x]N Quantum Wellsp. 144
4.10 Microstructure and Device Performancep. 149
4.10.1 Stress and Point Defect Structurep. 149
4.10.2 Minimization of Strain by Maximizing Film Smoothnessp. 149
4.10.3 The Role of Dislocations in Strain Relaxationp. 150
4.10.4 The Role of Nanopipes and Extension to ELOG Structuresp. 150
4.11 Referencesp. 150
5. Emission Mechanisms and Excitons in GaN and InGaN Bulk and QWsp. 153
5.1 Introductionp. 153
5.2 GaN Bulk Crystalsp. 154
5.2.1 Free and Bound Excitonsp. 154
5.2.2 Biexcitons in GaNp. 165
5.2.3 Strain Effectsp. 175
5.2.4 Phonons in Nitridesp. 176
5.3 InGaN Bulk and QWs for Practical Devicesp. 184
5.3.1 Quantized Energy Levelsp. 186
5.3.2 Piezoelectric Fieldp. 192
5.3.3 Spontaneous Emission of Localized Excitonsp. 197
5.3.4 Localized Exciton Dynamicsp. 219
5.3.5 Optical Gain in Nitridesp. 248
5.4 Referencesp. 258
6. Life Testing and Degradation Mechanisms in InGaN LEDsp. 271
6.1 Introductionp. 271
6.2 Life Testing of InGaN/AlGaN/GaN LEDsp. 272
6.2.1 Life Testing Primerp. 272
6.2.2 Potential Degradation Regions in LEDsp. 273
6.2.3 Life Test System Considerationsp. 274
6.2.4 Results of Life Tests on Nichia Blue InGaN/AlGaN/GaN Double Heterostructure LEDsp. 276
6.3 Analysis of Early Test Failuresp. 281
6.3.1 Analysis of LED #19p. 281
6.3.2 Analysis of LEDs #16 and 17p. 282
6.4 Effects of UV Emission on Plastic Transparencyp. 286
6.5 Thermal Degradation of Plastic Package Transparencyp. 289
6.6 Degradation of GaN-Based LEDs Under High Current Stressp. 295
6.7 Double Heterostructure Device Testingp. 295
6.8 EBIC Analysisp. 301
6.9 Pulsed Current Stress Experiments and Results on Quantum Well LEDsp. 307
6.10 Failure Analysis of Degraded Quantum Well LEDsp. 309
6.11 Discussionp. 312
6.12 Summaryp. 313
6.13 Referencesp. 314
7. Development and Future Prospects of GaN-based LEDs and LDp. 317
7.1 Properties of InGaN-based LEDsp. 317
7.1.1 Introductionp. 317
7.1.2 Amber LEDsp. 317
7.1.3 UV/Blue/Green LEDsp. 321
7.1.4 Roles of Dislocations in InGaN-Based LEDsp. 328
7.2 LDs Grown on Sapphire Substratep. 333
7.2.1 Introductionp. 333
7.2.2 LDs Grown on Sapphire Substratesp. 333
7.2.3 ELOG Substratep. 336
7.2.4 InGaN-Based LDs Grown on ELOG Substratesp. 338
7.3 LDs Grown on GaN Substratep. 343
7.3.1 Free-Standing GaN Substratesp. 344
7.3.2 Characteristics of LDsp. 344
7.4 Future Prospects of InGaN-based Emitting Devicesp. 348
7.5 Referencesp. 348
Appendix
Parameters Tablep. 351
Subject Indexp. 369
Go to:Top of Page