Skip to:Content
|
Bottom
Cover image for Stem cells and revascularization therapies
Title:
Stem cells and revascularization therapies
Series:
Biotechnology and bioprocessing series ; v. 34

Biotechnology and bioprocessing series ; v. 34.
Publication Information:
Boca Raton, FL. : CRC, c2012.
Physical Description:
xiii, 296 p., [32] p. of plates : ill. (some col.) ; 25 cm.
ISBN:
9781439803233

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010297203 QH588.S83 S7455 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

In the last few decades, significant advancements in the biology and engineering of stem cells have enabled progress in their clinical application to revascularization therapies. Some strategies involve the mobilization of endogenous stem cell populations, and others employ cell transplantation. However, both techniques have benefited from multidisciplinary efforts to create biomaterials and other biomedical tools that can improve and control the fate of stem cells, and advance our understanding of them.

Stem Cells and Revascularization Therapiesfocuses on the fundamentals and applied studies in stem cell biology, and provides perspectives associated with the development of revascularization strategies. To help readers understand the multidisciplinary issues associated with this topic, this book has been divided into four sections:

Section 1:Explores how to define, isolate, and characterize various stem and progenitor cell populations for neovascularization Section 2:Summarizes some especially useful model systems and approaches used to regulate angiogenesis, vasculogenesis, and arteriogenesis, and explores their impact on formation of functional vessels in vivo Section 3:Focuses on stem cell homing to sites of injury and inflammation, as well as strategies to exploit this mobilization phenomenon Section 4:Covers stem cell transplantation topics, including recreating features of endogenous stem cell niches to maintain the multipotency of transplanted cells and combinatorial delivery of cells and molecular factors

Intended to inspire new contributions to improve the therapeutic efficacy, Stem Cells and Revascularization Therapiesoutlines emergent findings and challenges regarding the use of stem cells in revascularization therapies. Overcoming the significant


Author Notes

Andrew Putnamis an associate professor in the Department of Biomedical Engineering at the University of Michigan. He obtained his B.S. in Chemical Engineering from UCLA in 1994, M.S.E. (1996) and Ph.D. (2001) degrees in Chemical Engineering from the University of Michigan, and completed post-doctoral training in Cell Biology at the Van Andel Institute. Dr. Putnam began his independent academic career at the University of California Irvine in January 2003, where he remained until relocating to Michigan in July 2009. Dr. Putnam's research focuses on the interface between cells and the extracellular matrix (ECM), with a particular emphasis on the role of matrix compliance (i.e., stiffness) and matrix remodeling during neovascularization. Fundamental insights gained from this research are used to design instructive materials that mimic the ECM for applications in regenerative medicine and as model systems for studying disease.

Lawrence B. Schookis Vice President for Research for the University of Illinois and serves as the Director of the Division of Biomedical Sciences (DBS) at the University of Illinois at Urbana-Champaign (UIUC). His research focuses on genetic resistance to disease, regenerative medicine, and using genomics to create animal models for biomedical research. Schook is a Professor of Animal Sciences, Bioengineering, Pathobiology, Nutritional Sciences, Pathology and Surgery. Dr. Schook is also a Professor at the Institute for Genomic Biology and holds Affiliate Faculty appointments at the Beckman Institute for Advanced Science and Technology and the Micro and Nanotechnology Laboratory. He formerly served as the Theme Leader for Regenerative Biology and Tissue Engineering at the Institute for Genomic Biology.
Dr. Schook attended Albion College and received his M.S. and Ph.D. from Wayne State School of Medicine. After postdoctoral training at the Institute for Clinical Immunology in Switze


Table of Contents

Limor Chen-Konak and Amir Fine and Shulamit LevenbergPatrick Allen and Joyce BischoffJi Woong Han and Rebecca Diane Levit and Young-sup YoonLisa R. Trump and Gregory Timp and Lawrence B. SchookJustin T. Koepsel and William L. MurphyColette J. Shen and Christopher S. ChenLiang Youyun and Ross J. DeVolder and Hyunjoon KongWeian Zhao and James Ankrum and Debanjan Sarkar and Namit Kumar and Wei Suong Teo and Jeffrey M. KarpJeffrey J.D. Henry and Song LiDmitry Shvartsman and David J. MooneySuk Ho Bhang and Byung-Soo Kim
Prefacep. ix
Contributorsp. xi
Part I Defining, Isolating, and Characterizing Various Stem and Progenitor Cell Populations for Neovascularization
Chapter 1 Embryonic Stem Cellsp. 3
Chapter 2 Building Blood Vessels Using Endothelial and Mesenchymal Progenitor Cellsp. 31
Chapter 3 Induced Pluripotent Stem Cellsp. 55
Part II In Vitro Studies for Angiogenesis, Vasculogenesis, and Arteriogenesis
Chapter 4 Guiding Stem Cell Fate through Microfabricated Environmentsp. 107
Chapter 5 Spatial Localization of Growth Factors to Regulate Stem Cell Fatep. 131
Chapter 6 Regulation of Capillary Morphogenesis by the Adhesive and Mechanical Microenvironmentp. 165
Chapter 7 Treating Cardiovascular Diseases by Enhancing Endogenous Stem Cell Mobilizationp. 193
Part III Stem Cell Mobilization Strategies
Chapter 8 Stem Cell Homing to Sites of Injury and Inflammationp. 217
Chapter 9 In Vitro Vascular Tissue Engineeringp. 243
Part IV Stem Cell Transplantation Strategies
Chapter 10 Scaffold-Based. Approaches to Maintain the Potential of Transplanted Stem Cellsp. 259
Chapter 11 Combined Therapies of Cell Transplantation and Molecular Deliveryp. 281
Indexp. 291
Go to:Top of Page