Skip to:Content
|
Bottom
Cover image for The finite element method in heat transfer and fluid dynamics
Title:
The finite element method in heat transfer and fluid dynamics
Personal Author:
Publication Information:
United kingdom : Taylor & Francis, 2000
ISBN:
9780849323553
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010167674 TA357 R43 2000 Open Access Book Book
Searching...
Searching...
30000010078860 TA357 R43 2000 Unknown 1:CHECKING
Searching...
Searching...
30000010078859 TA357 R43 2000 Unknown 1:CHECKING
Searching...

On Order

Summary

Summary

The numerical simulation of fluid mechanics and heat transfer problems is now a standard part of engineering practice. The widespread availability of capable computing hardware has led to an increased demand for computer simulations of products and processes during their engineering design and manufacturing phases. The range of fluid mechanics and heat transfer applications of finite element analysis has become quite remarkable, with complex, realistic simulations being carried out on a routine basis.

The award-winning first edition of The Finite Element Method in Heat Transfer and Fluid Dynamics brought this powerful methodology to those interested in applying it to the significant class of problems dealing with heat conduction, incompressible viscous flows, and convection heat transfer. The Second Edition of this bestselling text continues to provide the academic community and industry with up-to-date, authoritative information on the use of the finite element method in the study of fluid mechanics and heat transfer. Extensively revised and thoroughly updated, new and expanded material includes discussions on difficult boundary conditions, contact and bulk nodes, change of phase, weighted-integral statements and weak forms, chemically reactive systems, stabilized methods, free surface problems, and much more.

The Finite Element Method in Heat Transfer and Fluid Dynamics offers students a pragmatic treatment that views numerical computation as a means to an end and does not dwell on theory or proof. Mastering its contents brings a firm understanding of the basic methodology, competence in using existing simulation software, and the ability to develop some simpler, special purpose computer codes.


Author Notes

J. N. Reddy earned a Ph.D. in Engineering Mechanics and worked as a Postdoctoral Fellow at the University of Texas at Austin, Research Scientist for Lockheed Missiles and Space Company during 1974-75, and taught at the University of Oklahoma from 1975 to 1980 and Virginia Polytechnic Institute and State University from 1980 to 1992. Currently, he is a Distinguished Professor and the inaugural holder of the Oscar S. Wyatt Endowed Chair at Texas AandM University
David K. Gartling is a Senior Scientist in the Engineering Sciences Center at Sandia National Laboratories, Albuquerque, New Mexico. He earned his B.S. and M.S. in Aerospace Engineering at the University of Texas at Austin and completed the diploma course at the von Karman Institute for Fluid Dynamics in Brussels, Belgium. After completion of his Ph.D. in Aerospace Engineering at the University of Texas at Austin, he joined the technical staff at Sandia National Laboratories. Dr. Gartling was a Visiting Associate Professor in the Mechanical Engineering Department at the University of Sydney, Australia under a Fulbright Fellowship, and later he was a Supervisor in the Fluid and Thermal Sciences Department at Sandia National Laboratories


Table of Contents

Preface to the Second Editionp. v
Preface to the First Editionp. vii
1. Equations of Heat Transfer and Fluid Mechanicsp. 1
1.1 Introductionp. 1
1.1.1 Heat Transferp. 1
1.1.2 Fluid Mechanicsp. 2
1.2 Present Studyp. 3
1.3 Governing Equations of a Continuump. 3
1.3.1 Introductionp. 3
1.3.2 Conservation of Mass; the Continuity Equationp. 4
1.3.3 Conservation of Momentap. 4
1.3.4 Conservation of Energyp. 5
1.3.5 Constitutive Equationsp. 5
1.4 Governing Equations in Terms of Primitive Variablesp. 7
1.4.1 Vector Formp. 7
1.4.2 Cartesian Component Formp. 7
1.4.3 Cylindrical Component Formp. 8
1.4.4 Closurep. 9
1.5 Porous Flow Equationsp. 10
1.6 Auxiliary Transport Equationsp. 11
1.7 Chemically Reacting Systemsp. 12
1.8 Boundary Conditionsp. 15
1.8.1 Viscous Flow Boundary Conditionsp. 15
1.8.2 Porous Flow Boundary Conditionsp. 18
1.8.3 Thermal and Transport Boundary Conditionsp. 19
1.8.4 Initial Conditionsp. 20
1.9 Change of Phasep. 21
1.10 Enclosure Radiationp. 23
1.11 Summary of Equationsp. 25
Problemsp. 26
References for Additional Readingp. 28
2. The Finite Element Method: An Overviewp. 31
2.1 Introductionp. 31
2.2 Model Differential Equationp. 32
2.3 Finite Element Approximationp. 33
2.4 Weighted-Integral Statements and Weak Formsp. 35
2.5 Finite Element Modelp. 38
2.6 Interpolation Functionsp. 39
2.7 Assembly of Elementsp. 43
2.8 Time-Dependent Problemsp. 45
2.8.1 Introductionp. 45
2.8.2 Semidiscretizationp. 46
2.8.3 Temporal Approximationp. 47
2.9 Axisymmetric Problemsp. 48
2.10 Convective Boundary Conditionsp. 51
2.11 Library of Finite Elementsp. 52
2.11.1 Introductionp. 52
2.11.2 Triangular Elementsp. 52
2.11.3 Rectangular Elementsp. 54
2.12 Numerical Integrationp. 55
2.12.1 Preliminary Commentsp. 55
2.12.2 Coordinate Transformationsp. 57
2.12.3 Integration Over a Master Rectangular Elementp. 60
2.12.4 Integration Over a Master Triangular Elementp. 61
2.13 Modeling Considerationsp. 62
2.13.1 Mesh Generationp. 62
2.13.2 Representation of Boundary Fluxp. 64
2.13.3 Imposition of Boundary Conditionsp. 64
2.14 Illustrative Examplesp. 65
2.14.1 Example 1p. 66
2.14.2 Example 2p. 72
2.14.3 Example 3p. 73
Problemsp. 74
References for Additional Readingp. 77
3. 3-D Conduction Heat Transferp. 79
3.1 Introductionp. 79
3.2 Semidiscrete Finite Element Modelp. 80
3.3 Interpolation Functionsp. 83
3.3.1 Preliminary Commentsp. 83
3.3.2 Hexahedral (Brick) Elementsp. 83
3.3.3 Prism Elementsp. 85
3.3.4 Tetrahedral Elementsp. 86
3.4 Numerical Integrationp. 87
3.5 Computation of Surface Fluxp. 88
3.6 Semidiscrete Finite Element Modelp. 91
3.7 Solution of Nonlinear Equationsp. 92
3.7.1 Preliminary Commentsp. 92
3.7.2 Steady-State Problemsp. 92
3.7.3 Transient Problemsp. 94
3.8 Radiation Solution Algorithmsp. 104
3.9 Variable Propertiesp. 108
3.9.1 Temperature-Dependent Propertiesp. 108
3.9.2 Phase Change Propertiesp. 109
3.9.3 Anisotropic Propertiesp. 111
3.10 Post-Processing Operationsp. 112
3.10.1 Heat Fluxp. 112
3.10.2 Heat Flow Functionp. 114
3.11 Advanced Topics in Conductionp. 115
3.11.1 Introductionp. 115
3.11.2 Specialty Elementsp. 116
3.11.3 Computational Boundary Conditionsp. 119
3.11.4 Bulk Nodesp. 125
3.11.5 Reactive Materialsp. 127
3.11.6 Material Motionp. 129
3.12 Example Problemsp. 130
3.12.1 Introductionp. 130
3.12.2 Temperature-Dependent Conductivityp. 131
3.12.3 Anisotropic Conductivityp. 131
3.12.4 One-Dimensional Stefan Problemp. 133
3.12.5 Drag Bit Analysisp. 135
3.12.6 Brazing and Welding Analysesp. 136
3.12.7 Investment Castingp. 141
Problemsp. 143
References for Additional Readingp. 144
4. Viscous Incompressible Flowsp. 149
4.1 Introductionp. 149
4.1.1 Backgroundp. 149
4.1.2 Governing Equationsp. 149
4.2 Mixed Finite Element Modelp. 152
4.2.1 Weak Formp. 152
4.2.2 Finite Element Modelp. 153
4.3 Penalty Finite Element Modelsp. 156
4.3.1 Introductionp. 156
4.3.2 Penalty Function Methodp. 157
4.3.3 Reduced Integration Penalty Modelp. 159
4.3.4 Consistent Penalty Modelp. 160
4.4 Finite Element Models of Porous Flowp. 161
4.5 Computational Considerationsp. 163
4.5.1 Properties of the Matrix Equationsp. 163
4.5.2 Choice of Interpolation Functionsp. 164
4.5.3 Evaluation of Element Matrices in Penalty Modelsp. 169
4.5.4 Pressure Calculationp. 170
4.5.5 Traction Boundary Conditionsp. 172
4.6 Solution of Nonlinear Equationsp. 175
4.6.1 General Discussionp. 175
4.6.2 Fully Coupled Solution Methodsp. 178
4.6.3 Pressure Correction/Projection Methodsp. 183
4.7 Time-Approximation Schemesp. 186
4.7.1 Preliminary Commentsp. 186
4.7.2 Forward/Backward Euler Schemesp. 186
4.7.3 Adams-Bashforth/Trapezoid Rulep. 187
4.7.4 Implicit Integration and Time Step Controlp. 188
4.7.5 Explicit Integrationp. 189
4.8 Stabilized Methodsp. 190
4.8.1 Preliminary Commentsp. 190
4.8.2 Galerkin/Least-Squares Formulationp. 191
4.9 Post-Processingp. 194
4.9.1 Stress Computationp. 194
4.9.2 Stream Function Computationp. 196
4.9.3 Particle Trackingp. 198
4.10 Advanced Topics - Free Surface Flowsp. 198
4.10.1 Preliminary Commentsp. 198
4.10.2 Time-Independent Free Surfacesp. 199
4.10.3 Time-Dependent Free Surfacesp. 204
4.11 Advanced Topics - Turbulencep. 211
4.11.1 Preliminary Commentsp. 211
4.11.2 Governing Equationsp. 212
4.11.3 General Turbulence Modelsp. 213
4.11.4 One-Point Closure Turbulence Modelsp. 215
4.11.5 Finite Element Modeling of Turbulencep. 219
4.12 Numerical Examplesp. 221
4.12.1 Preliminary Commentsp. 221
4.12.2 Fluid Squeezed between Parallel Platesp. 222
4.12.3 Flow of a Viscous Lubricant in a Slider Bearingp. 225
4.12.4 Wall-Driven 2-D Cavity Flowp. 226
4.12.5 Wall-Driven 3-D Cavity Flowp. 229
4.12.6 Evaluation of the EBE Iterative Solversp. 229
4.12.7 Backward Facing Stepp. 233
4.12.8 Flow Past a Submarinep. 235
4.12.9 Crystal Growth from the Meltp. 237
4.12.10 Mold Fillingp. 238
Problemsp. 242
References for Additional Readingp. 243
5. Convective Heat Transferp. 255
5.1 Introductionp. 255
5.1.1 Backgroundp. 255
5.1.2 Governing Equationsp. 255
5.2 Mixed Finite Element Modelp. 257
5.3 Penalty Finite Element Modelp. 261
5.3.1 Preliminary Commentsp. 261
5.3.2 Reduced Integration Penalty Modelp. 262
5.3.3 Consistent Penalty Modelp. 263
5.4 Finite Element Models of Porous Flowp. 263
5.5 Solution Methodsp. 265
5.5.1 General Discussionp. 265
5.5.2 Newton's Methodp. 266
5.5.3 Segregated Equation Methodsp. 267
5.6 Convection with Change of Phasep. 269
5.7 Convection with Enclosure Radiationp. 271
5.8 Post-Computation of Heat Fluxp. 271
5.9 Advanced Topics - Turbulent Heat Transferp. 273
5.10 Advanced Topics - Chemically Reacting Systemsp. 274
5.10.1 Preliminary Commentsp. 274
5.10.2 Finite Element Modeling of Chemical Reactionsp. 274
5.11 Numerical Examplesp. 275
5.11.1 Preliminary Commentsp. 275
5.11.2 Concentric Tube Flowp. 275
5.11.3 Tube Flow with Change of Phasep. 276
5.11.4 Heated Cavityp. 278
5.11.5 Solar Receiverp. 279
5.11.6 Tube Bundlep. 282
5.11.7 Volumetrically Heated Fluidp. 284
5.11.8 Porous/Fluid Layerp. 287
5.11.9 Curing of An Epoxyp. 289
References for Additional Readingp. 292
6. Non-Newtonian Fluidsp. 295
6.1 Introductionp. 295
6.2 Governing Equations of Inelastic Fluidsp. 296
6.2.1 Conservation Equationsp. 296
6.2.2 Boundary Conditionsp. 297
6.2.3 Constitutive Equationsp. 298
6.3 Finite Element Models of Inelastic Fluidsp. 301
6.3.1 Introductionp. 301
6.3.2 Mixed Modelp. 302
6.3.3 Penalty Modelp. 304
6.3.4 Matrix Evaluationsp. 305
6.4 Solution Methods for Inelastic Fluidsp. 307
6.5 Governing Equations of Viscoelastic Fluidsp. 311
6.5.1 Conservation Equationsp. 311
6.5.2 Constitutive Equationsp. 312
6.5.3 Boundary Conditionsp. 318
6.6 Finite Element Model of Differential Formp. 318
6.6.1 Preliminary Commentsp. 318
6.6.2 Summary of Governing Equationsp. 318
6.6.3 Finite Element Modelp. 320
6.6.4 Solution Methodsp. 324
6.7 Additional Models of Differential Formp. 325
6.7.1 Explicitly Elliptic Momentum Equation Methodp. 326
6.7.2 Elastic Viscous Stress Splitting Methodp. 327
6.8 Finite Element Model of Integral Formp. 329
6.9 Unresolved Problemsp. 331
6.9.1 General Commentsp. 331
6.9.2 Choice of Constitutive Equationp. 332
6.9.3 Solution Uniqueness and Existencep. 332
6.9.4 Numerical Algorithm Problemsp. 333
6.9.5 Equation Change of Typep. 334
6.9.6 Closurep. 335
6.10 Numerical Examplesp. 335
6.10.1 Preliminary Commentsp. 335
6.10.2 Buoyancy Driven Flow in a Cavityp. 336
6.10.3 Driven Cavity Flowp. 336
6.10.4 Squeeze Film Flowp. 339
6.10.5 Time-Dependent Poiseuille Flowp. 341
6.10.6 Four-to-One Contraction Problemp. 343
Problemsp. 346
References for Additional Readingp. 346
7. Coupled Problemsp. 353
7.1 Introductionp. 353
7.2 Coupled Boundary Value Problemsp. 353
7.3 Fluid Mechanics and Heat Transferp. 354
7.3.1 Introductionp. 354
7.3.2 Continuum Equationsp. 355
7.3.3 Finite Element Modelsp. 356
7.4 Solid Mechanicsp. 357
7.4.1 Introductionp. 357
7.4.2 Continuum Equationsp. 357
7.4.3 Constitutive Relationsp. 360
7.4.4 Boundary Conditionsp. 361
7.4.5 Finite Element Modelsp. 361
7.4.6 Solution Methods - Quasi-Static Solid Mechanicsp. 363
7.5 Electromagneticsp. 363
7.5.1 Introductionp. 363
7.5.2 Maxwell's Equationsp. 364
7.5.3 Electromagnetic Potentialsp. 367
7.5.4 Boundary and Interface Conditionsp. 370
7.5.5 Gauge Conditionsp. 372
7.5.6 Static Field Problemsp. 372
7.5.7 Finite Element Models for EM Fieldsp. 374
7.5.8 Solution Methods - EM Fieldsp. 379
7.6 Coupled Problems in Mechanicsp. 380
7.6.1 Introductionp. 380
7.6.2 Heat Conduction - Viscous Fluid Interactions 1 and 2p. 381
7.6.3 Heat Conduction - Quasi-Static Interactions 1 and 3p. 381
7.6.4 Heat Conduction - Electric Field Interactions 1 and 4p. 383
7.6.5 Heat Conduction - Electromagnetic Field Interactions 1 and 4 and 5p. 384
7.6.6 Viscous Flow - Quasi-Static Solid Interactions 2 and 3p. 386
7.6.7 Viscous Flow - Electric Field Interactions 2 and 4p. 387
7.6.8 Viscous Flow - Electromagnetic Field Interactions 2 and 4 and 5p. 388
7.6.9 Quasi-Static Solid - Electromagnetic Field Interactions 3 and 4 and 5p. 389
7.7 Implementation of Coupled Algorithmsp. 390
7.8 Numerical Examplesp. 392
7.8.1 Introductionp. 392
7.8.2 Thermal-Stress Examplep. 392
7.8.3 Thermal-Electromagnetic Examplep. 395
7.8.4 Fluid-Solid Interaction Examplep. 398
7.8.5 Fluid-Electromagnetic Examplep. 400
References for Additional Readingp. 402
8. Advanced Topics: Parallel Processingp. 405
8.1 Introductionp. 405
8.2 Parallel Systemsp. 406
8.2.1 Classificationp. 406
8.2.2 Languages and Communication Utilitiesp. 408
8.2.3 Performancep. 409
8.3 FEM and Parallel Processingp. 411
8.3.1 Preliminary Commentsp. 411
8.3.2 Generic FEM Stepsp. 411
8.3.3 External Preprocessingp. 412
8.3.4 Internal Preprocessingp. 414
8.3.5 Solution Processingp. 414
8.3.6 Internal Postprocessingp. 418
8.3.7 External Postprocessingp. 419
8.3.8 Other Parallel Issuesp. 419
8.4 Summaryp. 421
References for Additional Readingp. 421
Appendix A Computer Program FEM2DHTp. 425
A.1 Introductionp. 425
A.2 Heat Transfer and Related Problemsp. 425
A.3 Flows of Viscous Incompressible Fluidsp. 426
A.4 Description of the Input Datap. 426
A.5 Source Listings of Selective Subroutinesp. 436
Referencep. 436
Appendix B Solution of Linear Equationsp. 443
B.1 Introductionp. 443
B.2 Direct Methodsp. 444
B.3 Iterative Methodsp. 445
B.3.1 General Commentsp. 445
B.3.2 Solution Algorithmsp. 446
References for Additional Readingp. 450
Appendix C Fixed Point Methods and Contraction Mappingsp. 455
C.1 Fixed Point Theoremp. 455
C.2 Chord Methodp. 457
C.3 Newton's Methodp. 457
C.4 The Newton-Raphson Methodp. 458
C.5 Descent Methodsp. 459
References for Additional Readingp. 459
Subject Indexp. 461
Go to:Top of Page