Skip to:Content
|
Bottom
Cover image for Applied mathematics in integrated navigation systems
Title:
Applied mathematics in integrated navigation systems
Personal Author:
Series:
AIAA education series
Edition:
2nd ed.
Publication Information:
Reston, VA : American Institute of Aeronautics and Astronautics, 2003
ISBN:
9781563476563

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010127281 TL695 R63 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

Intended for those directly involved with the design, integration, and test and evaluation of navigation systems, this text/CD-ROM presents elements of basic mathematics, kinematics, equations describing navigation systems and their error models, and Kalman filtering. Detailed derivations are presen


Author Notes

Robert M. Rogers received his degrees in Aerospace Engineering from the University of Florida and is an Associate Fellow of the American Institute of Aeronautics and Astronautics. As sole proprietor of Rogers Engineering & Associates, Dr. Rogers performs research development, systems analysis, test and evaluation, and teaching for the Department of Defense and the National Aeronautics and Space Administration in integrated navigation systems


Table of Contents

Prefacep. xiii
Part 1 Elements of Integrated Navigation Systems
Chapter 1. Introductionp. 3
Chapter 2. Mathematical Preliminariesp. 7
2.1 Vector/Matrix Algebrap. 7
2.2 Vector/Matrix Calculusp. 13
2.3 Linearization Techniquesp. 16
2.4 Direction Cosine Matricesp. 18
2.5 Miscellaneous Mathematical Topicsp. 28
2.6 Chapter Summaryp. 30
Problemsp. 30
Chapter 3. Coordinate Systems and Transformationsp. 41
3.1 Coordinate Systemsp. 41
3.2 Coordinate Frame Transformationsp. 47
3.3 Chapter Summaryp. 54
Problemsp. 55
Chapter 4. Earth Modelsp. 59
4.1 Ellipsoid Geometryp. 59
4.2 Ellipsoid Gravityp. 66
4.3 Chapter Summaryp. 67
Problemsp. 68
Chapter 5. Terrestrial Navigationp. 73
5.1 Strap-Down Navigation Systemsp. 73
5.2 Local Level Navigation Frame Mechanization Equationsp. 74
5.3 Perturbation Form of Navigation System Error Equationsp. 77
5.4 Navigation System Attitude Error Equations: Psi Formulationp. 84
5.5 Navigation System Error Equations Using Alternative Velocity Errorp. 84
5.6 Vertical Channelp. 88
5.7 Chapter Summaryp. 90
Problemsp. 91
Chapter 6. Navigation Sensor Modelsp. 101
6.1 Gyro Performance Characterizationsp. 101
6.2 Sensor Error Modelsp. 105
6.3 Chapter Summaryp. 114
Problemsp. 114
Chapter 7. Navigation Aidsp. 117
7.1 Doppler Velocity Sensorsp. 117
7.2 Tactical Air Navigation Rangep. 121
7.3 Global Positioning System Rangep. 124
7.4 Forward Looking Infrared Line-of-Sight Systemsp. 132
7.5 Chapter Summaryp. 134
Problemsp. 135
Chapter 8. Kalman Filteringp. 141
8.1 Recursive Weighted Least Squares: Constant Systemsp. 142
8.2 Recursive Weighted Least Squares: Dynamic Systemsp. 146
8.3 Discrete Linear Minimum Variance Estimatorp. 149
8.4 U--D Factored Formp. 152
8.5 Summed Measurementsp. 158
8.6 Combined Estimate from Two Kalman Filtersp. 160
8.7 Chapter Summaryp. 163
Problemsp. 163
Part 2 Applications
Chapter 9. Strap-Down Inertial Sensor Laboratory Calibrationp. 173
9.1 Navigation Mechanization Reviewp. 174
9.2 Sensor Error Modelp. 174
9.3 Solutions for Sensor Errorsp. 174
9.4 Data Collection Rotation Sequencesp. 175
9.5 Observation Equationsp. 177
9.6 Processing Sequencesp. 180
9.7 Simulated Laboratory Data Calibrationp. 180
9.8 Chapter Summaryp. 183
Chapter 10. Flight Test Evaluationsp. 189
10.1 Optical Tracking Trajectory Reconstructionp. 190
10.2 Tactical Air Navigation/Inertial Navigation Unit Reconstructionp. 195
10.3 Vehicle Dynamics with Radar Tracking Trajectory Reconstructionp. 200
10.4 Chapter Summaryp. 212
Chapter 11. Inertial Navigation System Ground Alignmentp. 215
11.1 Initial Coarse Alignment and Resulting Errorsp. 215
11.2 Fine Alignment Kalman Filterp. 218
11.3 Simulated Ground Fine Alignmentp. 220
11.4 Chapter Summaryp. 227
Chapter 12. Integration via Kalman Filtering: Global Positioning System Receiverp. 229
12.1 Global Positioning System Receiver Kalman Filter Configurationsp. 230
12.2 Inertial Navigation System Configuration Kalman Filterp. 230
12.3 Simulated Global Positioning System Receiver Inertial Navigation System Kalman Filter Operationp. 237
12.4 Chapter Summaryp. 242
Chapter 13. In-Motion Alignmentp. 245
13.1 Transfer Alignmentp. 245
13.2 Alignment Without Benefit of Attitude Initializationp. 255
13.3 Chapter Summaryp. 265
Chapter 14. Integrated Differential Global Positioning System/Dead-Reckoning Navigationp. 267
14.1 Dead-Reckoning Navigation Equationsp. 268
14.2 Dead-Reckoning System Error Modelp. 269
14.3 Differential Global Positioning System Position Observationsp. 272
14.4 Integrated Dead-Reckoning/Differential Global Positioning System Implementationp. 272
14.5 Test Conditionsp. 273
14.6 Test Resultsp. 274
14.7 Chapter Summaryp. 277
Chapter 15. Attitude Determination and Estimationp. 279
15.1 Terrestrial Attitude Determinationp. 279
15.2 Attitude Determination by Iterationp. 283
15.3 Attitude Estimationp. 284
15.4 Chapter Summaryp. 298
Chapter 16. Summaryp. 299
Appendix A. Pinson Error Modelp. 303
Appendix B. Global Positioning System Position Velocity and Acceleration Filter Error Modelp. 313
Appendix C. Coarse Alignment Error Equationsp. 315
Go to:Top of Page