Skip to:Content
|
Bottom
Cover image for High tempreature air combustion : from energy conservation to pollution reduction
Title:
High tempreature air combustion : from energy conservation to pollution reduction
Series:
Environmental and energy engineering series
Publication Information:
Boca Raton, Fla. : CRC Press, 2003
ISBN:
9780849310362
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010028956 TJ254.5 H54 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

Maximize efficiency and minimize pollution: the breakthrough technology of high temperature air combustion (HiTAC) holds the potential to overcome the limitations of conventional combustion and allow engineers to finally meet this long-standing imperative. Research has shown that HiTAC technology can provide simultaneous reduction of CO2 and nitric oxide emissions and reduce energy consumption for a specific process or requirement.

High Temperature Air Combustion: From Energy Conservation to Pollution Reduction provides the first comprehensive exposition of the principles and practice of HiTAC. With a careful balance of theory and practice, it reviews the historical background, clearly describes HiTAC combustion phenomena, and shows how to simulate and apply the technology for significant energy savings, reduced equipment size, and lower emissions. It offers design guidelines for high performance industrial furnaces, presents field trials of practical furnaces, and explores potential applications of HiTAC in other fields, including the conversion of solid waste fuels to cleaner fuels, stationary gas turbine engines, internal combustion engines, and other advanced energy-to-power conversion systems.

Developed through an intensive research project sponsored by the Japanese government, HiTAC now promises to revolutionize our paradigm for using all kinds of fossil, alternative, waste, and derived fuels for energy conversion and utilization in industry. This book is your opportunity to understand its principles, learn about the technology, and begin to use it to the benefit of your application, your company, and the environment.


Author Notes

Tsuji, Hiroshi; Gupta, Ashwani K.; Hasegawa, Toshiaki; Katsuki, Masashi; Kishimoto, Ken; Morita, Mitsunobu


Table of Contents

Chapter 1 Introductionp. 1
1.1 Historical Background of High Temperature Air Combustionp. 1
1.1.1 Environment and Energy Conservationp. 1
1.1.2 Reduction of Pollutant Emissions and Energy Crisisp. 2
1.1.3 Panorama of High Temperature Air Combustion Technologyp. 4
1.2 Innovation of High Temperature Air Combustionp. 6
1.2.1 Fundamentals of Combustionp. 6
1.2.1.1 Heat Recirculating Combustionp. 6
1.2.1.2 Definition of High Temperature Airp. 10
1.2.1.3 Heat Recirculation and Exhaust Gas Recirculationp. 10
1.2.2 Principle of Combustion Control for CO[subscript 2] and NO[subscript x] Reductionp. 13
1.2.2.1 Carbon Dioxidep. 13
1.2.2.2 Nitric Oxidesp. 15
1.2.3 Heat Transfer in High Temperature Air Combustionp. 17
1.2.3.1 Convection Heat Transfer of High Temperature Air Combustionp. 18
1.2.3.2 Radiant Heat Transfer of High Temperature Air Combustionp. 20
1.2.3.3 Effect of Wall as Wavelength Conversion Body in High Temperature Air Combustionp. 21
1.2.4 Thermodynamics of High Temperature Air Combustionp. 23
Referencesp. 28
Chapter 2 Combustion Phenomena of High Temperature Air Combustionp. 29
2.1 Introductionp. 29
2.2 Flame Featuresp. 30
2.2.1 Flame Stabilityp. 30
2.2.1.1 Temperature Profilesp. 32
2.2.1.2 Influence on NO[subscript x] Emissionsp. 34
2.2.2 Thermal Field Behaviorp. 34
2.2.2.1 350 kW-Scale Combustion Testp. 34
2.2.2.2 Cold Flow Model Testp. 34
2.2.2.3 Temperature Profilesp. 36
2.2.2.4 Flow Patternsp. 38
2.2.3 Flame Structure, Radicals, and Speciesp. 39
2.2.3.1 Experimental Furnace for Optical Measuringp. 39
2.2.3.2 Combustion Conditionsp. 39
2.2.3.3 Optical Measurement Resultsp. 42
2.2.3.4 Summaryp. 48
2.2.4 Flame with Heat and Combustion Products Recirculationp. 49
2.2.4.1 Improved Heating Methodp. 49
2.2.4.1.1 Heat and Combustion Product Recirculationp. 49
2.2.4.2 Heat Balance in the Systemp. 50
2.2.4.2.1 Gross Heat Inputp. 50
2.2.4.2.2 Heat Transfer in Furnacep. 51
2.2.4.2.3 Heat Outputp. 53
2.2.4.2.4 Equation Arrangementp. 53
2.2.4.3 Calculation Resultsp. 53
2.2.4.3.1 Effect of Gas Recirculationp. 53
2.2.4.3.2 Heat and Gas Recirculationp. 54
2.2.4.3.3 Thermal Efficiencyp. 57
2.2.4.4 Discussionp. 57
2.2.4.5 Summaryp. 60
2.3 Fundamentals of Gaseous Fuel Flamesp. 60
2.3.1 Extinction Limit and No[subscript x] in Laminar Diffusion Flamep. 60
2.3.1.1 Experimental Apparatusp. 61
2.3.1.2 Velocity Field and Temperature Fieldp. 62
2.3.1.3 Extinction and Re-ignition Temperatures of Laminar Diffusion Flamep. 64
2.3.1.4 Distributions of Temperature and Concentrations of Speciesp. 66
2.3.1.5 Effect of Flame Temperature on NO[subscript x] Formationp. 68
2.3.1.6 Relationship between Flame Temperature and the Critical Velocity Gradientp. 69
2.3.1.7 Summaryp. 70
2.3.2 Burning Velocityp. 71
2.3.2.1 Simulation Modelp. 71
2.3.2.2 Simulation Results and Discussionp. 72
2.3.2.2.1 Preheated but Not Diluted Premixed Flamesp. 72
2.3.2.2.2 Preheated and Diluted Premixed Flamesp. 73
2.3.2.2.3 Fuel Fluxp. 74
2.3.2.2.4 NO Formationp. 75
2.3.2.3 Summaryp. 78
2.3.3 Mixing in Furnacep. 79
2.3.3.1 Jet Mixingp. 79
2.3.3.2 Unmixednessp. 83
2.3.3.3 Well-Stirred Reactorp. 85
2.3.4 Pollutant Formationp. 86
2.3.4.1 Nitric Oxidesp. 86
2.3.5 Pollutant Formation and Emissionp. 90
2.3.5.1 Calculation Methodp. 91
2.3.5.2 Results and Discussionp. 91
Ignition of O = 5 Mixturep. 91
Ignition of O = 2 Mixturep. 98
Summaryp. 100
2.3.6 Radiationp. 100
2.4 Fundamentals of Liquid Fuel Flamesp. 107
2.4.1 Liquid Fuel Flame Characteristics and Stabilityp. 107
2.4.1.1 Experimental Apparatusp. 107
2.4.1.1.1 Spraying Devicep. 107
2.4.1.1.2 Combustion Devicep. 108
2.4.1.1.3 Spray Nozzlep. 108
2.4.1.2 Experimental Methodp. 109
2.4.1.2.1 Air Preheatingp. 109
2.4.1.2.2 Spray Pressurep. 111
2.4.1.2.3 Spraying Methodp. 111
2.4.1.2.4 Measurement of Flamep. 112
2.4.1.3 Experimental Resultsp. 112
2.4.1.3.1 Temperature of Blowoutp. 112
2.4.1.3.2 Flame Form and Flame Colorp. 113
2.4.1.4 Discussionsp. 114
2.4.1.4.1 Blowout of Flamep. 114
2.4.1.4.2 Changes in Flame Form and Flame Colorp. 115
2.4.1.4.3 Spray Combustion in the High Temperature Preheated Diluted Airp. 117
2.4.1.5 Summaryp. 117
2.4.2 Emissions in Liquid Fuel Flamep. 117
2.4.2.1 Emissions on Liquid Fuel Combustionp. 117
2.5 Fundamentals of Solid Fuel Flamesp. 118
2.5.1 Solid Fuel Flame Characteristicsp. 118
2.5.2 Combustion Process of Coalp. 121
2.5.2.1 Properties of Coalp. 122
2.5.2.2 Combustion Phenomena around Particlesp. 123
2.5.2.3 Combustion Phenomena inside a Particlep. 126
2.5.2.4 Final Stage of Combustionp. 126
2.5.2.5 Combustion Behavior of Coal at Synthetic Air Condition of High Temperaturep. 127
2.5.2.6 Summaryp. 130
2.5.3 Emissions in Solid Fuel Flamesp. 130
2.5.3.1 The Furnace Setupp. 131
2.5.3.2 Fuel Properties (Natural Gas/Coal)p. 133
2.5.3.3 Experimental Programp. 133
2.5.3.4 In-Flame Measurementsp. 135
2.5.3.4.1 Heat and Mass Balancep. 136
2.5.3.4.2 Gas Compositionp. 136
2.5.3.4.3 Temperature Measurementsp. 138
2.5.3.4.4 Velocity Measurementsp. 139
2.5.3.4.5 Burnoutp. 141
2.5.3.4.6 Solid Concentrationp. 142
2.5.3.4.7 Total Radiative Heat Fluxp. 145
2.5.3.4.8 Total Radiancep. 146
2.5.3.5 Input/Output Measurementsp. 148
2.5.3.5.1 Coal Gun Positionp. 150
2.5.3.5.2 Coal Transport Air Mass Flowp. 152
2.5.3.5.3 Precombustor NO[subscript x] Levelp. 155
2.5.3.6 Summaryp. 156
2.5.4 Combustion Rate of Solid Carbonp. 157
2.5.4.1 Combustion Field and Solid Carbon Specimensp. 158
2.5.4.2 Experimental Resultsp. 159
2.5.4.3 Combustion Rate in Room Temperature Airflowp. 159
2.5.4.4 Combustion Rate in High Temperature Airflowp. 160
2.5.4.5 Dynamic Analysis of Reactive Gasp. 161
2.5.4.5.1 Combustion Ratep. 161
2.5.4.6 Lower Limit of Oxygen Concentrationp. 163
2.5.4.7 Surface Temperature When a CO Flame Is Formedp. 166
2.5.4.8 Combustion Rate in High Temperature Airflowp. 166
2.5.4.9 Summaryp. 168
Referencesp. 168
Chapter 3 Simulation Models for High Temperature Air Combustionp. 171
3.1 Present State of Combustion Simulation in Furnacesp. 171
3.1.1 Introductionp. 171
3.1.2 Problems of Existing Combustion Modelsp. 172
3.1.2.1 Arrhenius Type One-Step Global Reaction Modelp. 172
3.1.2.2 Mixing-Is-Reacted Modelp. 173
3.1.2.3 Eddy-Break-Up Modelp. 174
3.1.2.4 Problems in Temperature Calculationp. 176
3.2 Combustion Model for High Temperature Air Combustionp. 176
3.2.1 Characteristics of High Temperature Air Combustionp. 176
3.2.2 Proposed Improvementsp. 177
3.2.3 Temperature Correction for Thermal Dissociationp. 178
3.2.4 Reaction Model for High Temperature Air Combustionp. 182
3.2.4.1 One-Step Global Reaction Model (Coffee)p. 182
3.2.4.2 Four-Step Reaction Model (Jones and Lindstedt)p. 183
3.2.4.3 Four-Step Reaction Model (Srivatsa)p. 184
3.2.5 Comparison of Reaction Modelsp. 185
3.2.5.1 Comparison of Flame Lifted Height by Different Reaction Modelsp. 186
3.2.5.2 Comparison of Maximum Flame Temperature by Different Reaction Modelsp. 188
3.2.5.3 Influence of Jet Velocity on Flame Lift Heightp. 188
3.3 Heat Transfer Model for High Temperature Air Combustionp. 190
3.3.1 Heat Transfer Modelsp. 190
3.3.1.1 Gray Modelp. 190
3.3.1.2 Weighted-Sum-of-Gray-Gases Modelp. 192
3.3.1.3 Nongray Modelsp. 194
3.3.2 Radiative Heat Transfer Using Nongray Property of Radiationp. 195
3.4 Examples of Practical Applicationp. 197
3.4.1 Nitric Oxide Emissionp. 198
3.4.1.1 Thermal NOp. 198
3.4.1.2 Prompt NOp. 199
3.4.1.3 NO Reduction Mechanism (Reburning)p. 199
3.4.1.4 Results and Discussionp. 201
3.4.2 Transient Behavior of Furnacesp. 202
3.4.2.1 Fluid Dynamics Modelp. 202
3.4.2.2 Radiation Heat Transfer Modelp. 203
3.4.2.3 Combustion Modelp. 204
3.4.2.4 Temperature Distribution during Fuel Changeoverp. 205
3.4.2.5 Comparison with Measured Temperatures by Suction Pyrometerp. 206
3.4.2.6 Calculation on Wide Regenerative Furnacep. 207
Referencesp. 208
Chapter 4 Practical Combustion Methods Used in Industriesp. 211
4.1 Historical Transition of Industrial Furnace Technologiesp. 211
4.1.1 Energy Technologies Discussed at COP3p. 211
4.1.2 Conventional Technologies of Energy Saving and Combustion Control for Industrial Furnacesp. 215
4.1.3 Development of High Performance Industrial Furnacesp. 219
4.2 Energy Conservationp. 230
4.2.1 Basic Approachp. 230
4.2.2 Effect of Improvementp. 230
4.3 Pollution Reductionp. 235
4.3.1 Basic Concept of Low NO[subscript x] Combustionp. 235
4.3.2 Results of the Testp. 237
4.3.3 Pollution Reductionp. 238
Referencesp. 241
Chapter 5 Design Guidelines for High Performance Industrial Furnacesp. 243
5.1 Flowchart on General Designp. 243
5.1.1 Design Concept of a High Performance Industrial Furnacep. 243
5.1.2 Optimal Design for Furnace Length and Heightp. 243
5.1.3 Optimal Design for Other Furnace Configurationp. 248
5.1.3.1 Pitch and Capacity of Burnerp. 248
5.1.3.2 Partition Wallp. 248
5.1.3.3 Analytical Study of the Effect of a Partition Wallp. 249
5.1.3.4 Lower Part of Furnacep. 251
5.1.3.5 Furnace Width and Maximum Combustion Capacityp. 262
5.2 Heat Balance and Performance Estimation with Simulation Programp. 263
5.2.1 Outline of Simulation Programp. 263
5.2.2 Basic Functions of the Simulatorp. 265
5.2.2.1 Estimation Method of Fuel Flow Volume and Exhaust Gas Temperatures Using Heat Balancep. 266
5.2.2.2 Calculation Method of the Internal Temperature of the Semifinished Steelp. 266
5.2.3 Calculation of Preheated Air Temperatures and Exhaust Gas Temperatures after Heat Exchangep. 269
5.2.4 Radiation Heat from the Furnace Body and Heat Loss by Cooling Waterp. 269
5.2.5 Outlines of System Operation Method and Simulation Resultp. 271
5.2.6 Comparison of Calculation and Measurementp. 271
5.2.7 Effect of Fuel Calorific Value on the Fuel Consumption of Reheating Furnacesp. 272
5.3 Combustion Control Systemp. 280
5.3.1 Basic Combustion Control System for Stable Operationp. 284
5.3.2 Signal Processing Methodp. 287
5.3.3 Disturbance Suppression Control of Door Open and Closep. 292
5.3.4 Future Trends of Combustion Control Technology Using High Temperature Air Combustionp. 295
5.4 Application Design of High Performance Furnacep. 296
5.4.1 Reheating Furnacep. 296
5.4.1.1 Specifications and Performance of Facilityp. 297
5.4.1.2 Detailed Specifications of Facilityp. 301
5.4.1.3 Attachmentsp. 302
5.4.2 Billet Reheatingp. 305
5.4.3 Heat Treatment Furnacep. 307
5.4.3.1 Heat Balance and Evaluation Method of Furnace Performancep. 308
5.4.3.2 Furnace Scale-Up for Commercial Productionp. 312
5.4.3.3 Test Design of Heat Treatment Furnacep. 314
5.4.4 Melting Furnacep. 320
5.4.4.1 Energy Savings and Exhaust Gas Regulationp. 320
5.4.4.2 Size Reductionp. 322
5.4.4.3 Method of Improving the Heat Transfer Efficiency inside the Furnacep. 324
5.4.4.4 A Design Example of High Performance Aluminum-Melting Furnacep. 325
5.5 Field Trials and Experiences Obtained through Field Test Demonstration Projectp. 327
5.5.1 Outline of the Field Test Projectp. 328
5.5.2 Applications for the Field Test in Fiscal Years 1998 and 1999p. 328
5.5.3 Characteristic Aspects of the 1998 Field Test Projectp. 333
5.5.4 Effects of Modifications in the Field Testsp. 334
5.5.5 Summaryp. 337
Referencesp. 339
Chapter 6 Potential Applications of High Temperature Air Combustion Technology to Other Systemsp. 341
6.1 Introductionp. 341
6.2 Combustion of Wastes and Solid Fuelsp. 344
6.2.1 Formation of Dioxins and Furansp. 350
6.2.1.1 Refuse (or Waste) Derived Fuelp. 350
6.2.1.2 Applied Technology for RDFp. 351
6.2.1.3 Changes in the Calorific Value of Municipal Wastesp. 351
6.2.1.4 Problems with Waste Derived Fuel Production and Combustionp. 352
6.3 Burning of Coals and Lowgrade Coalsp. 353
6.4 Volatile Organic Compoundsp. 354
6.5 Ash Meltingp. 354
6.6 Compact Boilersp. 355
6.7 Gas Turbine Combustion, Micro Gas Turbines, and Independent Power Productionp. 355
6.8 Paints, Oily Wastes, and Heavy Fuel Oilsp. 356
6.9 Fuel Cellsp. 356
Example 1p. 357
6.10 High Temperature Air Combustion Using Pure Oxygenp. 358
6.11 Summaryp. 359
Referencesp. 359
Appendix A Results of Investigations on the Current State of Japanese Industrial Furnacesp. 361
A.1 Introductionp. 361
A.2 Items and Methods of Investigationp. 361
A.3 Results of Investigationp. 362
A.3.1 Results of the Questionnaire with Usersp. 362
A.3.2 Results of Interview with Usersp. 362
A.3.3 Results of Estimate of Number of Installed Industrial Furnaces and Energy Consumptionp. 364
A.4 Evaluation Based on Results of Investigationp. 368
A.4.1 Evaluation of Estimated Number of Industrial Furnacesp. 368
A.4.2 Evaluation of the Presumed Values of Energy Consumption of Industrial Furnacesp. 371
A.4.3 Consideration of the Results of Interviews--Efficiency of Industrial Furnacesp. 372
A.5 Effect of Energy Saving by Development of High Performance Industrial Furnacesp. 373
A.5.1 Assumptions of Calculationsp. 373
A.5.2 Results of the Calculationp. 376
A.6 Summaryp. 377
Referencesp. 378
Appendix B Constants and Conversion Factorsp. 379
B.1 Universal Constants and Conversion Factorsp. 379
B.2 Nondimensional Parametersp. 381
B.3 Nomenclaturep. 382
Indexp. 387
Go to:Top of Page