Skip to:Content
|
Bottom
Cover image for Applied geostatistics with SGeMS : a user's guide
Title:
Applied geostatistics with SGeMS : a user's guide
Personal Author:
Publication Information:
New York : Cambridge University Press, 2009
Physical Description:
1 CD-ROM ; 12 cm.
ISBN:
9780521514149
General Note:
Accompanies text of the same title : (QE48.8 R45 2009)

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010182271 CP 015573 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...

On Order

Summary

Summary

The Stanford Geostatistical Modeling Software (SGeMS) is an open-source computer package for solving problems involving spatially related variables. It provides geostatistics practitioners with a user-friendly interface, an interactive 3-D visualization, and a wide selection of algorithms. This practical book provides a step-by-step guide to using SGeMS algorithms. It explains the underlying theory, demonstrates their implementation, discusses their potential limitations, and helps the user make an informed decision about the choice of one algorithm over another. Users can complete complex tasks using the embedded scripting language, and new algorithms can be developed and integrated through the SGeMS plug-in mechanism. SGeMS was the first software to provide algorithms for multiple-point statistics, and the book presents a discussion of the corresponding theory and applications. Incorporating the full SGeMS software (now available from www.cambridge.org/9781107403246), this book is a useful user-guide for Earth Science graduates and researchers, as well as practitioners of environmental mining and petroleum engineering.


Table of Contents

Albert Tarantola
Forewordp. ix
Prefacep. xi
List of programsp. xiii
List of symbolsp. xv
1 Introductionp. 1
2 General overviewp. 5
2.1 A quick tour of the graphical user interfacep. 5
2.2 A typical geostatistical analysis using SGeMSp. 5
2.2.1 Loading data into an SGeMS projectp. 8
2.2.2 Exploratory data analysis (EDA)p. 10
2.2.3 Variogram modelingp. 10
2.2.4 Creating a gridp. 12
2.2.5 Running a geostatistics algorithmp. 13
2.2.6 Displaying the resultsp. 14
2.2.7 Post-Processing the results with Pythonp. 19
2.2.8 Saving the resultsp. 21
2.2.9 Automating tasksp. 21
2.3 Data file formatsp. 23
2.4 Parameter filesp. 24
2.5 Defining a 3D ellipsoidp. 26
3 Geostatistics: a recall of conceptsp. 29
3.1 Random variablep. 30
3.2 Random functionp. 33
3.2.1 Simulated realizationsp. 34
3.2.2 Estimated mapsp. 37
3.3 Conditional distributions and simulationsp. 38
3.3.1 Sequential simulationp. 40
3.3.2 Estimating the local conditional distributionsp. 42
3.4 Inference and stationarityp. 44
3.5 The variogram, a 2-point statisticsp. 48
3.6 The kriging paradigmp. 50
3.6.1 Simple krigingp. 51
3.6.2 Ordinary kriging and other variantsp. 54
3.6.3 Kriging with linear average variablep. 57
3.6.4 Cokrigingp. 59
3.6.5 Indicator krigingp. 61
3.7 An introduction to mp statisticsp. 62
3.8 Two-point simulation algorithmsp. 65
3.8.1 Sequential Gaussian simulationp. 66
3.8.2 Direct sequential simulationp. 67
3.8.3 Direct error simulationp. 68
3.8.4 Indicator simulationp. 69
3.9 Multiple-point simulation algorithmsp. 71
3.9.1 Single normal equation simulation (SNESIM)p. 71
3.9.2 Filter-based algorithm (FILTERSIM)p. 72
3.10 The nu/tau expression for combining conditional probabilitiesp. 74
3.11 Inverse problemp. 79
4 Data sets and SGeMS EDA toolsp. 80
4.1 The data setsp. 80
4.1.1 The 2D data setp. 80
4.1.2 The 3D data setp. 81
4.2 The SGeMS EDA toolsp. 84
4.2.1 Common parametersp. 85
4.2.2 Histogramp. 85
4.2.3 Q-Q plot and P-P plotp. 87
4.2.4 Scatter plotp. 87
5 Variogram computation and modelingp. 90
5.1 Variogram computation in SGeMSp. 92
5.1.1 Selecting the head and tail propertiesp. 92
5.1.2 Computation parametersp. 93
5.1.3 Displaying the computed variogramsp. 98
5.2 Variogram modeling in SGeMSp. 98
6 Common parameter input interfacesp. 101
6.1 Algorithm panelp. 101
6.2 Selecting a grid and propertyp. 102
6.3 Selecting multiple propertiesp. 103
6.4 Search neighborhoodp. 104
6.5 Variogramp. 104
6.6 Krigingp. 105
6.7 Line entryp. 105
6.8 Non-parametric distributionp. 106
6.9 Errors in parametersp. 108
7 Estimation algorithmsp. 109
7.1 KRIGING: univariate krigingp. 109
7.2 INDICATOR KRIGINGp. 113
7.3 COKRIGING: kriging with secondary datap. 119
7.4 BKRIG: block kriging estimationp. 122
8 Stochastic simulation algorithmsp. 132
8.1 Variogram-based simulationsp. 132
8.1.1 LUSIM: LU simulationp. 133
8.1.2 SGSIM: sequential Gaussian simulationp. 135
8.1.3 COSGSIM: sequential Gaussian CO-simulationp. 139
8.1.4 DSSIM: direct sequential simulationp. 143
8.1.5 SISIM: sequential indicator simulationp. 147
8.1.6 COSISIM: sequential indicator co-simulationp. 153
8.1.7 BSSIM: block sequential simulationp. 157
8.1.8 BESIM: block error simulationp. 163
8.2 Multiple-point simulation algorithmsp. 168
8.2.1 SNESIM: single normal equation simulationp. 169
8.2.2 FILTERSIM: filter-based simulationp. 191
9 Utilitiesp. 215
9.1 TRANS: histogram transformationp. 215
9.2 TRANSCAT: categorical transformationp. 218
9.3 POSTKRIGING: post-processing of kriging estimatesp. 222
9.4 POSTSIM: post-processing of realizationsp. 224
9.5 NU-TAU MODEL: combining probability fieldsp. 227
9.6 BCOVAR: block covariance calculationp. 228
9.7 IMAGE PROCESSINGp. 233
9.8 MOVING WINDOW: moving window statisticsp. 234
9.9 TIGENERATOR: object-based image generatorp. 237
9.9.1 Object interactionp. 239
10 Scripting, commands and plug-insp. 245
10.1 Commandsp. 245
10.1.1 Command listsp. 246
10.1.2 Execute command filep. 248
10.2 Python scriptp. 249
10.2.1 SGeMS Python modulesp. 250
10.2.2 Running Python scriptsp. 250
10.3 Plug-insp. 252
Bibliographyp. 254
Indexp. 260
Go to:Top of Page