Skip to:Content
|
Bottom
Cover image for Modelling 1H NMR spectra of organic compounds theory and applications
Title:
Modelling 1H NMR spectra of organic compounds theory and applications
Personal Author:
Publication Information:
Hoboken, N.J. : Wiley, 2008
Physical Description:
1 CD-ROM ; 12 cm.
ISBN:
9780470723012
General Note:
Accompanies text of the same title : QD96.P7 A27 2008
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010194573 CP 012178 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...
Searching...
30000003503574 CP 012178 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...
Searching...
30000003503582 CP 012178 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...

On Order

Summary

Summary

Provides a theoretical introduction to graduate scientists and industrial researchers towards the understanding of the assignment of 1H NMR spectra Discusses, and includes on enclosed CD, one of the best, the fastest and most applicable pieces of NMR prediction software available Allows students of organic chemistry to solve problems on 1H NMR with access to over 500 assigned spectra


Author Notes

Raymond Abraham was appointed lecturer in organic chemistry at the The University of Liverpool in 196. Since then he has remained at Liverpool, with two fellowships taken at the Mellon Institute and the University of Trondheim in 1966 and 1979 respectively, now holding the position of Emeritus Professor. His research interests include: Molecular modelling and Proton Chemical Shift Predictions; Non-bonded and Hydrogen bonding Interactions and Conformational Analysis; and Lanthanide Induced Shifts and Molecular Geometries. He has over 300 publications including three books and ten reviews.

Mehdi Mobli is currently a post-doctoral research fellow at Manchester University, having completed his B.Sc in chemical engineering at Chalmers University of Technology in Sweden and his Ph.D. with Professor Abraham at The University of Liverpool. He has published 10 papers mainly in conjunction with Professor Abraham, all focused on the topic of this text.


Table of Contents

Prefacep. xi
1 Introduction to [superscript 1]H NMR Chemical Shiftsp. 1
1.1 Historical Backgroundp. 1
1.2 Basic Theory of NMRp. 3
1.3 The [superscript 1]H Chemical Shiftp. 4
1.3.1 Nuclear Shielding and Reference Compoundsp. 4
1.4 [superscript 1]H Substituent Chemical Shift (SCS)p. 5
1.4.1 Two-bond (H.C.X) Effectsp. 6
1.4.2 Three-bond (H.C.C.X) Effectsp. 6
1.4.3 [superscript 1]H SCSs in Olefins and Aromaticsp. 7
1.5 Long-range Effects on [superscript 1]H Chemical Shiftsp. 9
1.5.1 Steric (van der Waals) Effectsp. 10
1.5.2 Electric Field Effectsp. 10
1.5.3 [pi]-Electron Effectsp. 12
1.5.4 Hydrogen Bonding Shiftsp. 17
1.6 Tables of [superscript 1]H Chemical Shifts of Common Unsaturated and Saturated Cyclic Systemsp. 17
Referencesp. 20
2 Interpretation of [superscript 1]H NMR Coupling Patternsp. 23
2.1 Fine Structure due to HH Couplingp. 23
2.2 The Analysis of NMR Spectrap. 26
2.2.1 Nomenclature of the Spin System, Chemical and Magnetic Equivalencep. 26
2.2.2 Two Interacting Nuclei, the AB Spectrump. 29
2.2.3 Three Interacting Nuclei, the ABX Spectrump. 32
2.2.4 Four Interacting Nucleip. 32
2.2.5 Iterative Computer Analysisp. 37
2.2.6 Automatic Iteration of Complex Spectrap. 43
2.3 The Mechanism of Spin-Spin Couplingp. 44
2.3.1 Geminal HH Couplings ([superscript 2]J[subscript HH])p. 45
2.3.2 Vicinal HH Couplings ([superscript 3]J[subscript HH])p. 49
2.3.3 Ab initio Calculated Couplingsp. 52
2.3.4 Long-range HH Couplingsp. 55
2.4 HF Couplingsp. 57
2.4.1 Geminal HF Couplings ([superscript 2]J[subscript HF])p. 57
2.4.2 Vicinal HF Couplingsp. 58
2.4.3 Long-range HF Couplingsp. 61
Referencesp. 63
3 Chemical Shift Calculations and Molecular Structurep. 67
3.1 Introductionp. 67
3.2 Quantum Mechanical Calculations of [superscript 1]H Chemical Shiftsp. 68
3.3 The Database Approachp. 69
3.4 Semi-empirical Calculationsp. 70
3.5 Theory of the CHARGE Programp. 72
3.5.1 Through Bond Effectsp. 72
3.5.2 [superscript 1]H Chemical Shifts of Substituted Methanes and Ethanesp. 74
3.5.3 Through Space Effectsp. 77
3.5.4 Hydrogen Bonding Shiftsp. 78
3.5.5 Aromatic Compoundsp. 80
Referencesp. 82
4 Modelling [superscript 1]H Chemical Shifts, Hydrocarbonsp. 85
4.1 Introductionp. 85
4.2 Alkane Chemical Shiftsp. 86
4.2.1 H..H and C..H Steric Interactionsp. 86
4.2.2 The Methyl Effectp. 89
4.2.3 C-C Bond Anisotropyp. 90
4.2.4 Observed versus Calculated Shiftsp. 92
4.3 Alkene Chemical Shiftsp. 100
4.3.1 Introductionp. 100
4.3.2 C=C Bond Anisotropy and Shieldingp. 102
4.3.3 Observed versus Calculated Shiftsp. 104
4.4 Alkyne Chemical Shiftsp. 116
4.4.1 Introductionp. 116
4.4.2 C[identical with]C Bond Anisotropy and Shieldingp. 116
4.4.3 Observed versus Calculated Shiftsp. 118
4.4.4 Acetylene SCSsp. 121
4.4.5 Contributions to the Acetylene SCSsp. 126
4.4.6 Naphthyl and Phenanthryl Acetylenesp. 128
4.5 Summaryp. 129
Referencesp. 130
5 Modelling [superscript 1]H Chemical Shifts, Aromaticsp. 133
5.1 Aromatic Hydrocarbonsp. 133
5.1.1 Introductionp. 133
5.1.2 Ring Currents, [pi]-Electron Densities and Steric Effectsp. 135
5.1.3 Observed versus Calculated Shiftsp. 139
5.2 Heteroaromaticsp. 148
5.2.1 Introductionp. 148
5.2.2 Theory and Application to Heteroaromaticsp. 149
5.2.3 Observed versus Calculated Shiftsp. 155
5.2.4 Ring Currents and [pi]-Electron Shiftsp. 159
5.3 Summaryp. 166
Referencesp. 167
6 Modelling [superscript 1]H Chemical Shifts, Monovalent Substituentsp. 169
6.1 Introductionp. 169
6.2 Fluorine Substituent Chemical Shiftsp. 169
6.2.1 Electric Field Theoryp. 170
6.2.2 Fluoroalkanesp. 172
6.2.3 Fluoroalkenes and Aromaticsp. 177
6.3 Steric, Anisotropic and Electric Field Effects in Cl, Br and I SCSsp. 179
6.3.1 Introductionp. 179
6.3.2 Aromatic Halidesp. 182
6.3.3 Alkyl Halidesp. 184
6.3.4 Contributions to the [superscript 1]H SCSs in Halocyclohexanesp. 191
6.3.5 Steric Coefficients for Halogensp. 197
6.4 Alcohols and Phenolsp. 199
6.4.1 Introductionp. 199
6.4.2 Alcohols and Diolsp. 200
6.4.3 Phenolsp. 209
6.5 Aminesp. 215
6.5.1 Introductionp. 215
6.5.2 Theory and Application to Aminesp. 216
6.5.3 Observed versus Calculated Shiftsp. 217
6.5.4 Conformational Analysisp. 217
6.6 Cyanidesp. 224
6.6.1 Introductionp. 224
6.6.2 Theory and Application to the Cyano Groupp. 225
6.6.3 Observed versus Calculated Shiftsp. 226
6.6.4 Cyano SCSsp. 231
6.7 Nitro Compoundsp. 233
6.7.1 Introductionp. 233
6.7.2 Theory and Application to Nitro Compoundsp. 234
6.7.3 Observed versus Calculated Shiftsp. 236
6.7.4 SCSs of the Nitro Groupp. 237
6.7.5 Conformational Analysisp. 238
6.8 Summaryp. 241
Referencesp. 242
7 Modelling [superscript 1]H Chemical Shifts, Divalent Substituentsp. 247
7.1 Introductionp. 247
7.2 Aldehydes and Ketonesp. 247
7.2.1 Aliphatic Aldehydes and Ketonesp. 247
7.2.2 Aromatic Aldehydes and Ketonesp. 256
7.2.3 Conformational Analysisp. 261
7.3 Estersp. 263
7.3.1 Introductionp. 263
7.3.2 Theory, Application to Estersp. 264
7.3.3 Observed versus Calculated Shiftsp. 266
7.4 Amidesp. 273
7.4.1 Introductionp. 273
7.4.2 Theory, Application to Amidesp. 274
7.4.3 Aliphatic and Cyclic Amidesp. 275
7.4.4 Aromatic Amidesp. 279
7.5 Steric and Electric Field Effects in Acyclic and Cyclic Ethersp. 282
7.5.1 Introductionp. 282
7.5.2 Theory, Application to Ethersp. 283
7.5.3 Oxygen SCSs in Ethersp. 284
7.5.4 Observed versus Calculated Shiftsp. 286
7.6 Sulfoxides and Sulfonesp. 290
7.6.1 Introductionp. 290
7.6.2 Theory, Application to Sulfoxides and Sulfonesp. 290
7.6.3 Molecular Geometriesp. 290
7.6.4 Observed versus Calculated Shiftsp. 291
7.7 Summaryp. 297
Referencesp. 298
8 [superscript 1]H Chemical Shifts and Structural Chemistryp. 303
8.1 Introductionp. 303
8.2 Electronic Structure Calculationsp. 304
8.2.1 Basis Setsp. 306
8.3 Molecular Mechanics Calculationsp. 306
8.3.1 Conformer Generationp. 307
8.4 Molecular Geometries and [superscript 1]H Chemical Shift Calculationsp. 309
8.4.1 Methyl Anthracene-9-carboxylatep. 310
8.4.2 N-Formyl Aniline (1)p. 312
8.4.3 Benzosuberone (2)p. 313
8.5 Rate Processes and NMR Spectrap. 314
8.5.1 Theoryp. 314
8.5.2 Amide Rotationp. 317
8.5.3 Proton Exchange Equilibriap. 318
8.5.4 Rotation about Single Bonds, Ring Inversion Processesp. 319
8.6 Solvent Effectsp. 322
8.6.1 Introductionp. 322
8.6.2 Non-polar Compoundsp. 324
8.6.3 Polar Aprotic Compoundsp. 325
8.6.4 Protic Compoundsp. 331
8.6.5 Diols and Polyhydroxy Compoundsp. 340
8.6.6 Chemical Shift Contributionsp. 340
8.7 Summaryp. 345
Referencesp. 346
9 A Practical Approach to [superscript 1]H NMR Calculation and Predictionp. 349
9.1 Introductionp. 349
9.2 A Step-by-Step Description of Calculating [superscript 1]H NMR Spectrap. 350
9.2.1 Molecular Modelling and Conformational Searching - PCModelp. 350
9.2.2 Calculating [superscript 1]H Chemical Shifts and J-Coupling Constants - HNMRSPECp. 357
9.2.3 Displaying the Calculated [superscript 1]H Spectrum - IHPLOTp. 361
9.2.4 Advanced Use of HNMRSPEC_Sp. 362
9.2.5 Iteration of 2nd Order [superscript 1]H Spectra from Pre-specified [delta]s and Js - LAOCOONp. 363
9.3 Automated Spectral Prediction Using the NMRPredict Softwarep. 365
9.4 Concluding Remarksp. 368
Indexp. 369
Go to:Top of Page