Skip to:Content
|
Bottom
Cover image for Light and matter : electromagnetism, optics, spectroscopy and lasers
Title:
Light and matter : electromagnetism, optics, spectroscopy and lasers
Personal Author:
Publication Information:
Chichester : John Wiley, 2006
ISBN:
9780471899303

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010119081 QC760 B364 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Light and Matter: Electromagnetism, Optics, Spectroscopy and Lasers provides comprehensive coverage of the interaction of light and matter and resulting outcomes. Covering theory, practical consequencies and applications, this modern text serves to bridge the gap between electromagnetism, optics, spectroscopy and lasers. The book introduces the reader to the nature of light, explanes key procedures which occur as light travels through matter and delves into the effects and applications, exploring spectroscopy, lasers, nonlinear optics, fiber optics, quantum optics and light scattering. Extensive examples ensure clarity of meaning while the dynamic structure allows sections to be studies independently of one another.
* covers both fundamentals and applications
* features numerous examples
* dynamic structure allows sections to be studied independently of one another
* in depth coverage of modern topics.

This is an essential text for students of electromagnetism and optics, optoelectronics and lasers, quantum electronics spectroscopy, as well as being an invaluable reference for researches.


Reviews 1

Choice Review

Band (Ben-Gurion Univ., Israel) offers a thorough explanation of the interaction of light with matter. The book encompasses concepts from several cross-disciplinary fields, including electromagnetism, optics, spectroscopy, quantum optics, and lasers. The discussions cover both linear and nonlinear types of interaction phenomena. A brief explanation of the propagation of light in optical fibers is presented in the last chapter. The Gaussian units system is used generally in the book, and the International System of units (MKS) is introduced selectively in some cases. The book is well illustrated, and a few figures are reproduced in color. Problems are interspersed within the chapters. A list of references and five relevant appendixes are included. Readers are assumed to have a background in electricity and magnetism. ^BSumming Up: Recommended. Upper-division undergraduates through faculty. O. Eknoyan Texas A&M University


Table of Contents

Prefacep. xiii
1 Electromagnetic radiationp. 1
1.1 Brief history of the interaction of light and matterp. 3
1.2 Light in vacuump. 3
1.2.1 The electromagnetic spectrump. 6
1.2.2 Wave equation in vacuump. 26
1.2.3 Propagation of one component in one dimensionp. 30
1.2.4 Phase and group velocity of a light pulsep. 34
1.2.5 Amplitude modulationp. 38
1.2.6 Frequency and phase modulationp. 38
1.2.7 Energy, momentum and angular momentum of electromagnetic wavesp. 41
1.2.8 Polarized lightp. 50
1.2.9 Diffractionp. 60
1.2.10 Interferencep. 66
1.2.11 Temporal and spatial coherencep. 72
1.2.12 Photons: quantization of the electromagnetic fieldp. 75
1.3 Matter-source of lightp. 79
1.3.1 Classical expressions for the charge density and currentp. 79
1.3.2 The wave equation with source terms: Lienard-Wiechert potentialsp. 80
2 Phenomenology of light propagation in matterp. 87
2.1 Absorption of lightp. 88
2.1.1 Color of materialsp. 91
2.1.2 An aside on Einstein absorption and emission coefficientsp. 93
2.2 Nonlinear absorptionp. 94
2.2.1 Saturable absorptionp. 95
2.2.2 Reverse saturable absorptionp. 97
2.2.3 Two-photon absorptionp. 99
2.3 Index of refractionp. 100
2.3.1 Reflection and refraction at a boundary interfacep. 101
2.3.2 Relationship between refractive index and absorption: Kramers-Kronig relationp. 105
2.3.3 Dispersionp. 107
2.3.4 Refractive index temperature dependence: thermal lensingp. 112
2.4 Optical phenomena in nonisotropic mediap. 113
2.4.1 Introduction to crystallography and optics in crystalsp. 113
2.4.2 Dichroismp. 122
2.4.3 Birefringencep. 122
2.4.4 Optical activity, optical rotatory dispersion and circular dichroismp. 140
2.5 Electric field effectsp. 143
2.5.1 Kerr effectp. 143
2.5.2 Pockels effectp. 144
2.5.3 Piezoelectricityp. 149
2.5.4 Pyroelectric effectp. 151
2.5.5 Ferroelectric effectp. 152
2.5.6 Electrostrictionp. 158
2.5.7 Photorefractive effectp. 161
2.6 Acousto-optic effectsp. 163
2.6.1 Diffraction by acoustic waves: Brillouin scatteringp. 163
2.6.2 Photoelastic effect (stress-birefringence)p. 168
2.6.3 Acousto-optic detection of lightp. 169
2.7 Magnetic field effectsp. 171
2.7.1 Faraday effectp. 173
2.7.2 Voigt and Cotton-Mouton effectsp. 175
2.7.3 Magnetic circular birefringence and dichroismp. 176
2.7.4 Magnetostriction and magnetoelasticityp. 176
3 The interaction of light and matterp. 177
3.1 Lorentz force lawp. 178
3.2 Motion of a charged particle in static electric and magnetic fieldsp. 178
3.2.1 Motion in a magnetic field - the cyclotron frequencyp. 178
3.2.2 Crossed electric and magnetic fieldsp. 179
3.2.3 Conductivity, magnetoconductivity and Hall effectp. 180
3.3 Motion of a bound electron in an electromagnetic fieldp. 184
3.3.1 Linewidth due to spontaneous emissionp. 184
3.3.2 Rayleigh scattering, Thomson scattering, and resonant line scattering limitsp. 186
3.3.3 Polarization of a mediump. 193
3.3.4 Polarization of a medium in a static magnetic fieldp. 202
3.3.5 Electromagnetic field and a static electric fieldp. 206
3.3.6 Nonlinear polarization of a mediump. 207
3.4 Radiation due to acceleration of chargesp. 210
3.4.1 Radiation from relativistically moving chargesp. 211
3.4.2 Synchrotron emissionp. 214
3.4.3 Radiative damping force revisitedp. 215
3.4.4 Cherenkov radiationp. 217
3.5 Multipole radiationp. 217
3.5.1 Scattering of long wavelength electromagnetic radiation from small particlesp. 221
3.6 Scattering of a light wavepacketp. 224
3.7 Cooling and trapping of atomsp. 225
3.7.1 Far off-resonance trapping, atom mirrors and optical tweezersp. 226
3.7.2 Doppler coolingp. 228
3.7.3 Polarization gradient cooling (Sisyphus cooling) of atomsp. 230
4 Magnetic phenomena, constitutive relations and plasmasp. 235
4.1 Magnetic momentsp. 237
4.2 Magnetizationp. 242
4.2.1 Diamagnetismp. 243
4.2.2 Paramagnetismp. 244
4.2.3 Ferromagnetismp. 247
4.2.4 Ferrimagnetismp. 250
4.2.5 Antiferromagnetismp. 251
4.2.6 Permeability resonancesp. 251
4.3 Magnetic resonancep. 252
4.3.1 Nuclear magnetic resonancep. 256
4.4 Polarization and magnetization as source termsp. 259
4.5 Atomistic derivation of macroscopic electromagnetism and the constitutive relationsp. 261
4.6 Microscopic polarizability and macroscopic polarizationp. 264
4.6.1 Clausius-Mossotti equation and the Lorentz-Lorenz correction factorp. 265
4.6.2 Microscopic magnetic moment and macroscopic magnetizationp. 267
4.7 Dielectric relaxationp. 267
4.7.1 Molecular orientation (and re-orientation) in an applied fieldp. 270
4.7.2 Dispersion relations for light in dielectric crystalsp. 272
4.8 Plasmasp. 275
4.8.1 Plasma parametersp. 277
4.8.2 Constitutive equations in a plasmap. 280
4.8.3 Kinetic theoryp. 282
4.8.4 Hydrodynamic model of plasmasp. 284
4.8.5 Waves in a plasmap. 289
5 Quantum description of absorption, emission and light scatteringp. 293
5.1 Charged particle in an electromagnetic fieldp. 294
5.1.1 Electron spin couplingp. 297
5.1.2 Landau levels in a static magnetic fieldp. 300
5.2 Absorption and emissionp. 301
5.2.1 Time-dependent perturbation theoryp. 301
5.2.2 Spontaneous emissionp. 304
5.2.3 Stimulated emission and absorptionp. 309
5.2.4 Finite lifetime considerations for stimulated emission and absorptionp. 309
5.2.5 Finite duration pulsesp. 311
5.3 Rayleigh and Raman scatteringp. 312
5.3.1 Why is the sky blue, the setting sun red and clouds white?p. 316
5.4 Thomson scatteringp. 317
6 Spectroscopyp. 319
6.1 Atomsp. 320
6.1.1 The hydrogen atomp. 327
6.1.2 Multielectron atomic systemsp. 337
6.1.3 Atomic selection rulesp. 347
6.1.4 Broadening due to lifetime and collisionsp. 348
6.2 Moleculesp. 348
6.2.1 Hamiltonian for molecular systemsp. 348
6.2.2 The Born-Oppenheimer approximation and potential energy surfacesp. 349
6.2.3 Molecular orbitalsp. 350
6.3 Diatomic moleculesp. 353
6.3.1 Diatomic rotational and vibrational states and transitionsp. 354
6.3.2 Electric dipole transitionsp. 360
6.3.3 The Franck-Condon principlep. 361
6.3.4 More about rotational states and transitions: microwave spectroscopyp. 363
6.3.5 H[subscript 2 superscript +] ionp. 364
6.3.6 H[subscript 2] moleculep. 366
6.4 Polyatomic moleculesp. 367
6.4.1 Multidimensional Born-Oppenheimer potential surfacesp. 367
6.4.2 The nuclear Hamiltonian for molecular systemsp. 369
6.4.3 Rotational degrees of freedomp. 370
6.4.4 Large moleculesp. 377
6.5 Condensed-phase materialsp. 381
6.5.1 Crystals doped with metal ionsp. 381
6.5.2 Metalsp. 392
6.5.3 Semiconductor materialsp. 397
7 Lasersp. 409
7.1 Laser dynamicsp. 410
7.1.1 Three- and four-level lasersp. 410
7.1.2 Laser rate equationsp. 412
7.2 Thresholdp. 414
7.3 Steady statep. 416
7.3.1 Small signal gain and gain saturationp. 417
7.3.2 Circulating intracavity intensityp. 417
7.3.3 cw output vs inputp. 419
7.4 Pulsed laser operationp. 420
7.4.1 Relaxation oscillationsp. 420
7.4.2 Q-switchingp. 422
7.4.3 Mode-lockingp. 426
7.4.4 Extra-cavity pulse compressorp. 429
7.4.5 Chirped pulse amplifiersp. 429
7.5 Cavity modesp. 430
7.5.1 Longitudinal modesp. 430
7.5.2 Transverse modesp. 432
7.6 Amplified spontaneous emissionp. 435
7.7 Laser linewidthp. 437
7.8 Laser coherencep. 437
7.9 Specific laser systemsp. 437
7.9.1 He-Ne laserp. 438
7.9.2 Ar ion and Kr ion lasersp. 439
7.9.3 CO[subscript 2] laserp. 441
7.9.4 Nitrogen laserp. 443
7.9.5 Excimer and exciplex lasersp. 444
7.9.6 Dye lasersp. 444
7.9.7 Solid-state lasersp. 445
7.9.8 Semiconductor diode lasers: GaAs, AlGaAs heterostructuresp. 451
8 Nonlinear opticsp. 455
8.1 Expansion of the polarization in the electric fieldp. 456
8.1.1 Symmetry relations of the nonlinear susceptibilitiesp. 460
8.1.2 Electromagnetic energy density in a nonlinear mediump. 462
8.1.3 Local field corrections to nonlinear susceptibilitiesp. 464
8.1.4 The nonlinear wave equation for the slowly varying envelopep. 465
8.1.5 Manley-Rowe relationsp. 469
8.2 Phase-matchingp. 470
8.2.1 Collinear phase-matchingp. 471
8.2.2 Noncollinear phase-matchingp. 472
8.3 Second harmonic generationp. 473
8.3.1 Second harmonic generation with multimode lightp. 473
8.3.2 Short-pulse second harmonic generationp. 476
8.4 Three-wave mixingp. 478
8.4.1 Sum frequency generationp. 478
8.4.2 Difference frequency generationp. 484
8.5 Third harmonic generationp. 485
8.5.1 Third harmonic generation in rare gas mixturesp. 487
8.5.2 Effects of self-phase modulation on third harmonic generationp. 487
8.6 Self-focusing and self-phase modulationp. 488
8.6.1 The nonlinear Schrodinger equationp. 490
8.6.2 Optical solitonsp. 492
8.7 Four-Wave mixingp. 495
8.8 Stimulated Raman processesp. 496
8.8.1 Coherent anti-Stokes and Stokes Raman spectroscopyp. 498
8.9 Stimulated Brillouin processesp. 498
8.10 Nonlinear matter-wave opticsp. 501
9 Quantum-optical processesp. 503
9.1 Interaction of a two-level system with an electromagnetic fieldp. 504
9.1.1 Rotating wave approximationp. 505
9.1.2 Rabi oscillationsp. 506
9.1.3 Dressed statesp. 508
9.1.4 Adiabatic passage and the adiabatic theoremp. 512
9.2 Liouville-von Neumann equation for the density matrixp. 514
9.2.1 The density matrix description of matterp. 515
9.2.2 The steady-state density matrix solutionp. 524
9.2.3 Rate equation limitp. 526
9.2.4 Atom cooling and trapping revisitedp. 527
9.2.5 The adiabatic theorem for density matrix dynamicsp. 528
9.2.6 Inhomogeneous broadeningp. 529
9.2.7 Optical coherent transient processesp. 530
9.3 Three-level systemp. 536
9.3.1 Wavefunction treatment of a three-level systemp. 537
9.3.2 Population transfer using stimulated Raman adiabatic passagep. 539
9.3.3 Coherent trapping: dark statesp. 541
9.3.4 Density matrix treatment of a three-level systemp. 541
9.4 Coherent states and squeezed statesp. 543
9.4.1 Position-momentum squeezingp. 547
9.4.2 Number and phase squeezing and the phase operatorp. 549
9.4.3 Generation of squeezed states: parametric down-conversionp. 551
9.4.4 Homodyne detection of squeezed statesp. 552
9.4.5 Application of squeezed states: sub-shot-noise phase measurementsp. 553
9.5 The Jaynes-Cummings modelp. 554
9.6 Interaction between modes of a quantum fieldp. 556
9.6.1 Interaction representationp. 557
9.6.2 Quantum-field two-mode Rabi problemp. 558
9.6.3 Parametric oscillationp. 559
10 Light propagation in optical fibers and introduction to optical communication systemsp. 561
10.1 Fiber characteristicsp. 562
10.1.1 Attenuation in fibersp. 564
10.1.2 Dispersion in fibersp. 564
10.1.3 Polarization-maintenance and single-polarization fibersp. 566
10.1.4 Gain in doped fibersp. 566
10.2 Transverse modes of an optical fiberp. 567
10.2.1 Single-mode fiberp. 571
10.2.2 Imperfections in the fiberp. 572
10.2.3 Coupling between fiber modesp. 572
10.2.4 Fiber-Bragg gratingsp. 572
10.3 Nonlinear processes in fibersp. 573
10.3.1 Optical solitons in fibersp. 574
10.3.2 Stimulated Raman amplification in fibersp. 574
10.3.3 Higher-order nonlinear effectsp. 575
10.3.4 Parametric processesp. 576
10.4 Fiber-optic communication systemp. 576
10.4.1 Analogue communicationp. 577
10.4.2 Coherent optical communicationp. 577
10.4.3 Digital communicationp. 579
10.4.4 Multiplexing techniquesp. 581
Appendicesp. 583
Appendix A Vector analysisp. 583
A.1 Scalar and vector productsp. 583
A.2 Differential operatorsp. 583
A.3 Divergence and Stokes theoremsp. 585
A.4 Curvilinear coordinatesp. 586
Appendix B Electromagnetism and Maxwell's equationsp. 588
B.1 The laws of electromagnetismp. 588
B.2 Electromagnetic unitsp. 589
B.3 Maxwell's equationsp. 590
Appenddix C Quantum mechanics and the Schrodinger equationp. 595
C.1 Time-dependent and time-independent Schrodinger equationsp. 595
C.2 Spherical harmonicsp. 597
C.3 The radial Schrodinger equationp. 598
C.4 The free particlep. 600
C.5 The spherical top and the distorted spherical topp. 601
C.6 The Coulomb potentialp. 602
C.7 Atomic unitsp. 603
C.8 The Morse potentialp. 606
C.9 The harmonic oscillator potentialp. 607
Appendix D Perturbation theoryp. 609
D.1 Nondegenerate time-independent perturbation theoryp. 609
D.2 Degenerate time-independent perturbation theoryp. 611
D.3 Time-dependent perturbation theoryp. 612
Appendix E Fundamental constantsp. 613
Referencesp. 615
Bibliographyp. 619
Indexp. 623
Go to:Top of Page