Skip to:Content
|
Bottom
Cover image for Symplectic geometry and quantum mechanics
Title:
Symplectic geometry and quantum mechanics
Personal Author:
Series:
Operator theory, advances and applications ; 166
Publication Information:
Basel : Birkhauser Verlag, 2006
ISBN:
9783764375744

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010113505 QA665 G67 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Introduction We have been experiencing since the 1970s a process of "symplectization" of S- ence especially since it has been realized that symplectic geometry is the natural language of both classical mechanics in its Hamiltonian formulation, and of its re?nement,quantum mechanics. The purposeof this bookis to providecorema- rial in the symplectic treatment of quantum mechanics, in both its semi-classical and in its "full-blown" operator-theoretical formulation, with a special emphasis on so-called phase-space techniques. It is also intended to be a work of reference for the reading of more advanced texts in the rapidly expanding areas of sympl- tic geometry and topology, where the prerequisites are too often assumed to be "well-known"bythe reader. Thisbookwillthereforebeusefulforbothpurema- ematicians and mathematical physicists. My dearest wish is that the somewhat novel presentation of some well-established topics (for example the uncertainty principle and Schrod ¨ inger's equation) will perhaps shed some new light on the fascinating subject of quantization and may open new perspectives for future - terdisciplinary research. I have tried to present a balanced account of topics playing a central role in the "symplectization of quantum mechanics" but of course this book in great part represents my own tastes. Some important topics are lacking (or are only alluded to): for instance Kirillov theory, coadjoint orbits, or spectral theory. We will moreover almost exclusively be working in ?at symplectic space: the slight loss in generality is, from my point of view, compensated by the fact that simple things are not hidden behind complicated "intrinsic" notation.


Table of Contents

Prefacep. xiii
Introductionp. xiii
Organizationp. xiv
Prerequisitesp. xv
Bibliographyp. xv
Acknowledgementsp. xv
About the Authorp. xvi
Notationp. xvii
Number setsp. xvii
Classical matrix groupsp. xvii
Vector calculusp. xviii
Function spaces and multi-index notationp. xix
Combinatorial notationp. xx
Part I Symplectic Geometry
1 Symplectic Spaces and Lagrangian Planes
1.1 Symplectic Vector Spacesp. 3
1.1.1 Generalitiesp. 3
1.1.2 Symplectic basesp. 7
1.1.3 Differential interpretation of ¿p. 9
1.2 Skew-Orthogonalityp. 11
1.2.1 Isotropic and Lagrangian subspacesp. 11
1.2.2 The symplectic Gram-Schmidt theoremp. 12
1.3 The Lagrangian Grassmannianp. 15
1.3.1 Lagrangian planesp. 15
1.3.2 The action of Sp(n) on Lag(n)p. 18
1.4 The Signature of a Triple of Lagrangian Planesp. 19
1.4.1 First propertiesp. 20
1.4.2 The cocycle property of ¿p. 23
1.4.3 Topological properties of ¿p. 24
2 The Symplectic Group
2.1 The Standard Symplectic Groupp. 27
2.1.1 Symplectic matricesp. 29
2.1.2 The unitary group U(n)p. 33
2.1.3 The symplectic algebrap. 36
2.2 Factorization Results in Sp(n)p. 38
2.2.1 Polar and Cartan decomposition in Sp(n)p. 38
2.2.2 The "pre-Iwasawa" factorizationp. 42
2.2.3 Free symplectic matricesp. 45
2.3 Hamiltonian Mechanicsp. 50
2.3.1 Hamiltonian flowsp. 51
2.3.2 The variational equationp. 55
2.3.3 The group Ham(n)p. 58
2.3.4 Hamiltonian periodic orbitsp. 61
3 Multi-Oriented Symplectic Geometry
3.1 Souriau Mapping and Maslov Indexp. 66
3.1.1 The Souriau mappingp. 66
3.1.2 Definition of the Maslov indexp. 70
3.1.3 Properties of the Maslov indexp. 72
3.1.4 The Maslov index on Sp(n)p. 73
3.2 The Arnol'd-Leray-Maslov Indexp. 74
3.2.1 The problemp. 75
3.2.2 The Maslov bundlep. 79
3.2.3 Explicit construction of the ALM indexp. 80
3.3 q-Symplectic Geometryp. 84
3.3.1 The identification {{\rm Lag}}_{{\infin}}(n) = {{\rm Lag}}(n) \times \op {{Z}}p. 85
3.3.2 The universal covering Sp &infty; (n)p. 87
3.3.3 The action of Sp q (n) on Lag 2q (n)p. 91
4 Intersection Indices in Lag(n) and Sp(n)
4.1 Lagrangian Pathsp. 95
4.1.1 The strata of Lag(n)p. 95
4.1.2 The Lagrangian intersection indexp. 96
4.1.3 Explicit construction of a Lagrangian intersection indexp. 98
4.2 Symplectic Intersection Indicesp. 100
4.2.1 The strata of Sp(n)p. 100
4.2.2 Construction of a symplectic intersection indexp. 101
4.2.3 Example: spectral flowsp. 102
4.3 The Conley-Zehnder Indexp. 104
4.3.1 Definition of the Conley-Zehnder indexp. 104
4.3.2 The symplectic Cayley transformp. 106
4.3.3 Definition and properties of ¿(S &infty; )p. 108
4.3.4 Relation between ¿ and \mu_{{l_{{P}}}}p. 112
Part II Heisenberg Group, Weyl Calculus, and Metaplectic Representation
5 Lagrangian Manifolds and Quantization
5.1 Lagrangian Manifolds and Phasep. 123
5.1.1 Definition and examplesp. 124
5.1.2 The phase of a Lagrangian manifoldp. 125
5.1.3 The local expression of a phasep. 129
5.2 Hamiltonian Motions and Phasep. 130
5.2.1 The Poincaré-Cartan Invariantp. 130
5.2.2 Hamilton-Jacobi theoryp. 133
5.2.3 The Hamiltonian phasep. 136
5.3 Integrable Systems and Lagrangian Torip. 139
5.3.1 Poisson bracketsp. 139
5.3.2 Angle-action variablesp. 141
5.3.3 Lagrangian torip. 143
5.4 Quantization of Lagrangian Manifoldsp. 145
5.4.1 The Keller-Maslov quantization conditionsp. 145
5.4.2 The case of q-oriented Lagrangian manifoldsp. 147
5.4.3 Waveforms on a Lagrangian Manifoldp. 149
5.5 Heisenberg-Weyl and Grossmann-Royer Operatorsp. 152
5.5.1 Definition of the Heisenberg-Weyl operatorsp. 152
5.5.2 First properties of the operators \widehat {{T}}(z)p. 154
5.5.3 The Grossmann-Royer operatorsp. 156
6 Heisenberg Group and Weyl Operators
6.1 Heisenberg Group and Schrödinger Representationp. 160
6.1.1 The Heisenberg algebra and groupp. 160
6.1.2 The Schrödinger representation of H np. 163
6.2 Weyl Operatorsp. 166
6.2.1 Basic definitions and propertiesp. 167
6.2.2 Relation with ordinary pseudo-differential calculusp. 170
6.3 Continuity and Compositionp. 174
6.3.1 Continuity properties of Weyl operatorsp. 174
6.3.2 Composition of Weyl operatorsp. 179
6.3.3 Quantization versus dequantizationp. 183
6.4 The Wigner-Moyal Transformp. 185
6.4.1 Definition and first propertiesp. 186
6.4.2 Wigner transform and probabilityp. 189
6.4.3 On the range of the Wigner transformp. 192
7 The Metaplectic Group
7.1 Definition and Properties of Mp(n)p. 196
7.1.1 Quadratic Fourier transformsp. 196
7.1.2 The projection \pi^{{{{\rm Mp}}}} : {{\rm Mp}}(n) \rarr Sp(n)p. 199
7.1.3 Metaplectic covariance of Weyl calculusp. 204
7.2 The Metaplectic Algebrap. 208
7.2.1 Quadratic Hamiltoniansp. 208
7.2.2 The Schrödinger equationp. 209
7.2.3 The action of Mp(n) on Gaussians: dynamical approachp. 212
7.3 Maslov Indices on Mp(n)p. 214
7.3.1 The Maslov index \widehat \mu (\widehat {{S}})p. 215
7.3.2 The Maslov indices \widehat {{\mu}}_l(\widehat {{S}})p. 220
7.4 The Weyl Symbol of a Metaplectic Operatorp. 222
7.4.1 The operators \widehat {{R}}_{{\nu}}(S)p. 223
7.4.2 Relation with the Conley-Zehnder indexp. 227
Part III Quantum Mechanics in Phase Space
8 The Uncertainty Principle
8.1 States and Observablesp. 238
8.1.1 Classical mechanicsp. 238
8.1.2 Quantum mechanicsp. 239
8.2 The Quantum Mechanical Covariance Matrixp. 239
8.2.1 Covariance matricesp. 240
8.2.2 The uncertainty principlep. 240
8.3 Symplectic Spectrum and Williamson's Theoremp. 244
8.3.1 Williamson normal formp. 244
8.3.2 The symplectic spectrump. 246
8.3.3 The notion of symplectic capacityp. 248
8.3.4 Admissible covariance matricesp. 252
8.4 Wigner Ellipsoidsp. 253
8.4.1 Phase space ellipsoidsp. 253
8.4.2 Wigner ellipsoids and quantum blobsp. 255
8.4.3 Wigner ellipsoids of subsystemsp. 258
8.4.4 Uncertainty and symplectic capacityp. 261
8.5 Gaussian Statesp. 262
8.5.1 The Wigner transform of a Gaussianp. 263
8.5.2 Gaussians and quantum blobsp. 265
8.5.3 Averaging over quantum blobsp. 266
9 The Density Operator
9.1 Trace-Class and Hilbert-Schmidt Operatorsp. 272
9.1.1 Trace-class operatorsp. 272
9.1.2 Hilbert-Schmidt operatorsp. 279
9.2 Integral Operatorsp. 282
9.2.1 Operators with L 2 kernelsp. 282
9.2.2 Integral trace-class operatorsp. 285
9.2.3 Integral Hilbert-Schmidt operatorsp. 288
9.3 The Density Operator of a Quantum Statep. 291
9.3.1 Pure and mixed quantum statesp. 291
9.3.2 Time-evolution of the density operatorp. 296
9.3.3 Gaussian mixed statesp. 298
10 A Phase Space Weyl Calculus
10.1 Introduction and Discussionp. 304
10.1.1 Discussion of Schrödinger's argumentp. 304
10.1.2 The Heisenberg group revisitedp. 307
10.1.3 The Stone-von Neumann theoremp. 309
10.2 The Wigner Wave-Packet Transformp. 310
10.2.1 Definition of U ¿p. 310
10.2.2 The range of U ¿p. 314
10.3 Phase-Space Weyl Operatorsp. 317
10.3.1 Useful intertwining formulaep. 317
10.3.2 Properties of phase-space Weyl operatorsp. 319
10.3.3 Metaplectic covariancep. 321
10.4 Schrödinger Equation in Phase Spacep. 324
10.4.1 Derivation of the equation (10.39)p. 324
10.4.2 The case of quadratic Hamiltoniansp. 325
10.4.3 Probabilistic interpretationp. 327
10.5 Conclusionp. 331
A Classical Lie Groups
A.1 General Propertiesp. 333
A.2 The Baker-Campbell-Hausdorff Formulap. 335
A.3 One-parameter Subgroups of GL(m, \op {{R}} )p. 335
B Covering Spaces and Groups
C Pseudo-Differential Operators
C.1 The Classes S_{{\rho, \delta}}^m, L_{{\rho, \delta}}^{{m}}p. 342
C.2 Composition and Adjointp. 342
D Basics of Probability Theory
D.1 Elementary Conceptsp. 345
D.2 Gaussian Densitiesp. 347
Solutions to Selected Exercisesp. 349
Bibliographyp. 355
Indexp. 365
Go to:Top of Page