Skip to:Content
|
Bottom
Cover image for Seismic design of reinforced and precast concrete buildings
Title:
Seismic design of reinforced and precast concrete buildings
Personal Author:
Publication Information:
Hoboken, NJ : John Wiley & Sons, 2003
ISBN:
9780471081227

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010018075 TA658.44 E56 2003 Open Access Book Book
Searching...
Searching...
30000010221733 TA658.44 E56 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

* Presents the basics of seismic-resistant design of concrete structures.
* Provides a major focus on the seismic design of precast bracing systems.


Author Notes

ROBERT E. ENGLEKIRK is Adjunct Professor of Structural Engineering at the University of California, San Diego, and is registered in twenty states. A noted structural engineer who has been practicing for more than thirty-five years, he is the former president and founder of Robert Englekirk Consulting Engineers (now Englekirk Partners), author of Steel Structures (Wiley) and more than 100 papers, and the recipient of numerous awards.


Table of Contents

Prefacep. xiii
Nomenclaturep. xv
Introductionp. 1
1 Basic Conceptsp. 7
1.1 Ductility--A System Behavior Enhancerp. 8
1.1.1 Impact on Behaviorp. 9
1.1.2 Impact of Strength Degradation on Responsep. 13
1.1.3 Quantifying the Response of Structures to Ground Motionp. 14
1.1.4 Strength-Based Designp. 22
1.1.4.1 Identifying a Design Strength Objectivep. 22
1.1.4.2 Creating a Ductile Structurep. 24
1.1.5 Displacement-Based Designp. 26
1.1.5.1 Equal Displacement-Based Designp. 28
1.1.5.2 Direct Displacement-Based Designp. 31
1.1.6 System Ductilityp. 33
1.1.7 Recommended Displacement-Based Design Procedurep. 44
1.1.8 Selecting Design Strength Objectivesp. 49
1.1.9 Concluding Remarksp. 51
1.2 Confinement--A Component Behavior Enhancementp. 54
1.2.1 Impact of Confining Pressure on Strengthp. 54
1.2.2 High-Strength Concrete (HSC)p. 59
1.2.2.1 Ductilityp. 61
1.2.2.2 High-Strength Tiesp. 62
1.2.2.3 Higher Axial Loadsp. 63
1.3 Shearp. 64
1.3.1 Shear Strengthp. 65
1.3.2 Shear Transfer across Concrete Discontinuitiesp. 82
1.3.3 Passively Activated Shear Transfer Mechanismsp. 86
Selected Referencesp. 90
2 Component Behavior and Designp. 92
2.1 Beamsp. 93
2.1.1 Postyield Behavior--Flexurep. 95
2.1.1.1 Experimentally Based Conclusions--General Discussionp. 95
2.1.1.2 Predicting Postyield Deformation Limit Statesp. 107
2.1.1.3 Impact of Shear and Confinement on Behaviorp. 112
2.1.1.4 Importance of Detailingp. 116
2.1.1.5 Modeling Considerationsp. 120
2.1.2 Designing the Frame Beamp. 122
2.1.2.1 Beam-Column Joint Considerationsp. 124
2.1.2.2 Reinforcing Detailsp. 126
2.1.2.3 Beam Shear Demandp. 129
2.1.2.4 Column Shear Demandp. 131
2.1.2.5 Available Ductilityp. 133
2.1.2.6 Design Process Summaryp. 135
2.1.2.7 Example Designsp. 135
2.1.3 Analyzing the Frame Beamp. 144
2.1.3.1 Analysis Process Summaryp. 146
2.1.3.2 Example Analysisp. 149
2.1.3.3 Postyield Behaviorp. 163
2.1.4 Precast Concrete Beamsp. 166
2.1.4.1 Moment Transferp. 168
2.1.4.2 Shear Transferp. 172
2.1.4.3 Composite Systemsp. 173
2.1.4.4 Post-Tensioned Assemblagesp. 185
2.1.4.5 Bolted Assemblagesp. 216
2.1.4.6 Experimental Confirmationp. 222
2.2 The Beam Columnp. 244
2.2.1 Strength Limit Statesp. 245
2.2.1.1 Developing an Interaction Diagramp. 247
2.2.1.2 Design Relationshipsp. 250
2.2.2 Experimentally Based Conclusionsp. 251
2.2.2.1 Strengthp. 251
2.2.2.2 Strain Statesp. 255
2.2.2.3 Stiffnessp. 263
2.2.3 Conceptual Design of the Beam Columnp. 264
2.2.3.1 Estimating Probable Levels of Demandp. 264
2.2.3.2 Sizing the Beam Columnp. 270
2.2.3.3 Story Mechanism Considerationsp. 275
2.2.3.4 Design Process Summaryp. 276
2.2.3.5 Example Designsp. 278
2.2.4 Analyzing the Beam Columnp. 292
2.3 Beam-Column Jointsp. 296
2.3.1 Behavior Mechanismsp. 296
2.3.1.1 Bond Stressesp. 300
2.3.1.2 Biaxially Loaded Jointsp. 301
2.3.1.3 Exterior Jointsp. 301
2.3.1.4 Eccentric Beamsp. 301
2.3.2 Experimentally Based Conclusionsp. 302
2.3.3 Impact of High-Strength Concretep. 310
2.3.4 Impact of Joint Reinforcingp. 312
2.3.5 Bond Deterioration within the Beam-Column Jointp. 314
2.3.6 Design Procedurep. 314
2.3.7 Design Examplep. 321
2.3.8 Precast Concrete Beam-Column Joints--DDC Applicationsp. 322
2.3.8.1 Experimentally Based Conclusionsp. 322
2.3.8.2 Beam-Column Joint Design Proceduresp. 332
2.3.9 Precast Concrete Beam-Column Joints--Hybrid Systemp. 335
2.3.9.1 Experimentally Based Conclusions--Interior Beam-Column Jointp. 335
2.3.9.2 Design Procedures--Interior Beam-Column Jointsp. 341
2.3.9.3 Design Procedures--Exterior Beam-Column Jointsp. 344
2.3.9.4 Corner Hybrid Beam-Column Jointsp. 345
2.4 Shear Dominated Systemsp. 348
2.4.1 Tall Thin Wallsp. 349
2.4.1.1 Experimentally Based Conclusionsp. 349
2.4.1.2 Design Proceduresp. 374
2.4.1.3 Design Summaryp. 387
2.4.1.4 Design Examplep. 389
2.4.2 Shear Walls with Openingsp. 402
2.4.2.1 Coupling Beamsp. 402
2.4.2.2 Analytical Modeling of the Coupling Beamp. 417
2.4.2.3 Design Procedures--Coupling Beamsp. 425
2.4.2.4 Coupled Shear Walls with Stacked Openings--Design Process and Examplep. 437
2.4.2.5 Capped and Belted Shear Wallsp. 455
2.4.2.6 Shear Walls with Randomly Placed Openingsp. 471
2.4.3 Precast Concrete Shear Wallsp. 484
2.4.3.1 Experimental Effortsp. 485
2.4.3.2 Experimentally Inferred Conclusions--Hybrid Precast Wall Systemp. 514
2.4.3.3 Design Proceduresp. 514
2.4.3.4 Example Design--Ten-Story Shear Wallp. 519
Selected Referencesp. 530
3 System Designp. 533
3.1 Shear Wall Braced Buildingsp. 534
3.1.1 Shear Walls of Equivalent Stiffnessp. 534
3.1.1.1 Alternative Shear Wall Design Proceduresp. 536
3.1.1.2 Analyzing the Design Processesp. 561
3.1.1.3 Conceptual Design Reviewp. 564
3.1.1.4 Summarizing the Design Processp. 571
3.1.2 Shear Walls of Varying Lengthsp. 576
3.1.2.1 Alternative Design Methodologiesp. 576
3.1.2.2 Suggested Design Approachp. 593
3.1.3 Coupled Shear Walls--Design Confirmationp. 597
3.1.4 Precast Concrete Shear Wallsp. 615
3.1.4.1 Hybrid Wall System--Equal Displacement-Based Design (EBD, Section 3.1.1)p. 621
3.1.4.2 Hybrid Wall System--Direct Displacement Design Procedurep. 639
3.1.4.3 Vertically Jointed Wall Panelsp. 648
3.2 Frame Braced Buildingsp. 662
3.2.1 Design Objectives and Methodologiesp. 662
3.2.1.1 How to Avoid Lower Level Mechanismsp. 669
3.2.2 Force- or Strength-Based Design Proceduresp. 669
3.2.3 Displacement-Based Designp. 680
3.2.3.1 Building Modelp. 680
3.2.3.2 Single-Degree-of-Freedom (SDOF) Modelp. 689
3.2.4 Precast Concrete Frame--Direct Displacement-Based Designp. 691
3.2.4.1 DDC Framep. 694
3.2.4.2 Hybrid Framep. 700
3.2.4.3 Precast Frame Beam Designsp. 702
3.2.5 Irregular Framesp. 704
3.2.6 Frame Design Evaluation by Sequential Yield Analysisp. 711
3.2.6.1 What Constitutes Good Behavior?p. 712
3.2.6.2 P[Delta] Concerns and Modeling Assumptionsp. 713
3.2.6.3 Behavior Review--Frame 3 (Table 3.2.1)p. 718
3.2.6.4 Frame 3--Consequences of Alternative Strengthsp. 729
3.2.6.5 Behavior Review--Irregular Framep. 734
3.2.6.6 Behavior Review--Precast Frame Systemsp. 736
3.3 Diaphragmsp. 738
3.3.1 Design Approachp. 738
3.3.2 Estimating Diaphragm Responsep. 740
3.3.3 Establishing the Strength Limit State of a Diaphragmp. 746
3.3.4 Precast Concrete Diaphragmsp. 753
3.3.4.1 Composite Diaphragmsp. 753
3.3.4.2 Pretopped Precast Concrete Diaphragmsp. 754
3.4 Design Process Overviewp. 757
3.4.1 System Ductilityp. 758
3.4.2 Capacity Considerationsp. 758
3.4.3 Recommended Design Approachp. 759
Selected Referencesp. 762
4 Design Confirmationp. 763
4.1 Response of Shear Wall Braced Buildings to Ground Motionp. 764
4.1.1 Testing the Equal Displacement Hypothesisp. 768
4.1.2 Impact of Design Strength on Responsep. 776
4.2 Frame Braced Buildingsp. 780
4.2.1 Impact of Design Strength on Performancep. 780
4.2.2 Impact of Modeling Assumptionsp. 784
4.2.3 Distribution of Postyield Deformationsp. 794
4.2.4 Design/Behavior Reconciliationp. 797
4.2.5 Postyield Beam Rotationsp. 800
4.2.6 Evaluating Column Behaviorp. 800
4.2.7 Response of Irregular Framep. 802
4.2.8 Response of Precast Concrete Frames--DDCp. 806
4.3 Behavior Imponderablesp. 807
4.3.1 System Stability Considerationsp. 807
4.3.2 Torsionp. 810
Selected Referencesp. 814
Indexp. 815
Go to:Top of Page