Skip to:Content
|
Bottom
Cover image for Propagation handbook for wireless communication system design
Title:
Propagation handbook for wireless communication system design
Personal Author:
Series:
The electrical engineering and applied signal processing series
Publication Information:
Boca Raton, Fla. : CRC Press, 2003
ISBN:
9780849308208

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010063661 TK6552 C72 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

Data and models for better systems design

Atmospheric gases, building materials, the weather ... The propagation of wireless communications signals depends upon a whole range of factors, any or all of which can have a significant impact on the quality of a signal. Data generated by careful measurement of signals propagating under various environmental conditions are therefore fundamental to designing and building efficient, robust, and economical communication systems.

This handbook presents models that describe that data and make predictions for conditions that will affect operational systems. The author-chair of the science panel for the ACTS propagation experiment-focuses on EM waves of 0.3 to 300 GHz propagating through the lower atmosphere. The handbook describes the physical phenomena that can affect propagation, presents sample measurements and statistics, and provides models that system designers can use to calculate their link budgets and estimate the limitations the atmosphere could place on their designs.

Communications engineers around the world need this information readily at hand, not scattered throughout the literature. For engineers and systems designers involved in communications, navigation, radar, or remote sensing, the Propagation Handbook for Wireless Communication System Design will quickly become a standard and heavily relied-upon reference.


Table of Contents

Chapter 1 Propagation phenomena affecting wireless systemsp. 1
1.1 Types of systemsp. 1
1.2 Design criteriap. 3
1.3 Antenna considerationsp. 7
1.3.1 Transmission lossp. 7
1.3.2 Antenna beamwidthp. 11
1.4 Propagation effectsp. 13
1.4.1 Path attenuationp. 14
1.4.1.1 Atmospheric gasesp. 14
1.4.1.2 Clouds and fogp. 14
1.4.1.3 Rainp. 15
1.4.1.4 Water layerp. 16
1.4.1.5 Building materialp. 17
1.4.1.6 Vegetationp. 20
1.4.1.7 Obstaclesp. 21
1.4.2 Refractionp. 23
1.4.2.1 Ray tracingp. 24
1.4.2.2 Ductingp. 35
1.4.2.3 Effective Earth's radiusp. 42
1.4.2.4 Tropospheric scatterp. 45
1.4.2.5 Scintillationp. 52
1.4.3 Receiver noisep. 59
1.5 Propagation modelsp. 66
1.6 Model verificationp. 69
1.7 Statistics and riskp. 80
1.7.1 Stationarityp. 80
1.7.2 Variability model distributionp. 82
1.7.2.1 Lognormal modelp. 82
1.7.2.2 Normal distribution modelp. 86
1.7.2.3 Gamma distribution modelp. 88
1.7.2.4 Weibull distribution modelp. 89
1.7.2.5 Model selectionp. 91
1.7.3 Riskp. 93
1.8 List of symbolsp. 95
Referencesp. 98
Chapter 2 Propagation fundamentalsp. 101
2.1 Maxwell's equationsp. 101
2.2 Plane wavesp. 103
2.3 Spherical wavesp. 107
2.4 Reflection and refractionp. 109
2.5 Geometrical opticsp. 114
2.6 Ray tracingp. 120
2.7 Scalar diffraction theoryp. 123
2.8 Geometrical theory of diffractionp. 129
2.9 List of symbolsp. 133
Referencesp. 134
Chapter 3 Absorptionp. 135
3.1 Molecular absorptionp. 135
3.1.1 Complex index of refractionp. 135
3.1.1.1 Water vaporp. 136
3.1.1.2 Molecular oxygenp. 138
3.1.2 Approximate modelsp. 141
3.1.2.1 ITU-R modelp. 141
3.1.2.2 Regression modelp. 144
3.2 Absorption on a slant pathp. 145
3.2.1 Attenuationp. 145
3.2.2 Brightness temperaturep. 147
3.2.3 Approximate modelsp. 147
3.2.3.1 ITU-R modelp. 147
3.2.3.2 Regression modelp. 148
3.2.3.3 ACTS modelp. 148
3.2.4 Specific attenuation profilesp. 150
3.2.4.1 June 4, 1996p. 150
3.2.4.2 June 5, 1996p. 153
3.2.4.3 June 6, 1996p. 153
3.3 ACTS statisticsp. 157
3.3.1 Twice-daily sky brightness temperaturep. 157
3.3.1.1 Norman, OKp. 157
3.3.1.2 Fairbanks, AKp. 158
3.3.1.3 Vancouver, British Columbiap. 159
3.3.1.4 Greeley, COp. 159
3.3.1.5 Tampa, FLp. 159
3.3.1.6 White Sands, NMp. 160
3.3.1.7 Reston, VAp. 161
3.3.2 Gaseous absorption distributionsp. 162
3.3.2.1 Norman, OKp. 162
3.3.2.2 Fairbanks, AKp. 163
3.3.2.3 Vancouver, British Columbiap. 164
3.3.2.4 Greeley, COp. 165
3.3.2.5 Tampa, FLp. 165
3.3.2.6 White Sands, NMp. 165
3.3.2.7 Reston, VAp. 165
3.4 List of symbolsp. 167
Referencesp. 168
Chapter 4 Refractionp. 169
4.1 Ray bendingp. 169
4.1.1 Bending and focusingp. 171
4.1.2 Elevation angle errorp. 175
4.1.3 Trapping or ductingp. 182
4.2 Path delayp. 191
4.2.1 Range errorp. 191
4.2.2 Multipathp. 195
4.3 Scintillationp. 197
4.3.1 ACTS observationsp. 197
4.3.2 Low elevation angle observationsp. 213
4.3.3 Standard deviation prediction modelsp. 216
4.4 List of symbolsp. 222
Referencesp. 223
Chapter 5 Attenuation by clouds and rainp. 225
5.1 Rainp. 225
5.2 Rain attenuationp. 226
5.3 Seasonal rain attenuation statisticsp. 233
5.3.1 Monthly statisticsp. 233
5.3.2 Worst-month statisticsp. 234
5.4 Fade durationp. 239
5.5 Fade ratep. 244
5.6 Rain attenuation modelsp. 248
5.6.1 Rain rate modelsp. 249
5.6.1.1 Crane local modelp. 249
5.6.1.2 New ITU-R modelp. 255
5.6.1.3 Comparison to ACTS observationsp. 256
5.6.2 Two-component path attenuation modelp. 262
5.6.3 Application of the modelsp. 269
5.7 List of symbolsp. 279
Referencesp. 280
Appendix 5.1p. 281
Appendix 5.2p. 303
Referencesp. 303
Indexp. 305
Go to:Top of Page