Skip to:Content
|
Bottom
Cover image for Syntactic pattern recognition for seismic oil exploration
Title:
Syntactic pattern recognition for seismic oil exploration
Personal Author:
Series:
Series in machine perception and artificial intelligence ; 46
Publication Information:
River Edge, N.J. : World Scientific, 2002
ISBN:
9789810246006

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010018118 TN271.P4 H88 2002 Open Access Book Book
Searching...
Searching...
30000010022787 TN271.P4 H88 2002 Open Access Book Book
Searching...
Searching...
30000010022785 TN271.P4 H88 2002 Open Access Book Book
Searching...
Searching...
30000010022786 TN271.P4 H88 2002 Open Access Book Book
Searching...
Searching...
30000010022788 TN271.P4 H88 2002 Open Access Book Book
Searching...

On Order

Summary

Summary

The use of pattern recognition has become more and more important in seismic oil exploration. Interpreting a large volume of seismic data is a challenging problem. Seismic reflection data in the one-shot seismogram and stacked seismogram may contain some structural information from the response of the subsurface. Syntactic/structural pattern recognition techniques can recognize the structural seismic patterns and improve seismic interpretations.The syntactic analysis methods include: (1) the error-correcting finite-state parsing, (2) the modified error-correcting Earley's parsing, (3) the parsing using the match primitive measure, (4) the Levenshtein distance computation, (5) the likelihood ratio test, (6) the error-correcting tree automata, and (7) a hierarchical system.Syntactic seismic pattern recognition can be one of the milestones of a geophysical intelligent interpretation system. The syntactic methods in this book can be applied to other areas, such as the medical diagnosis system. The book will benefit geophysicists, computer scientists and electrical engineers.


Table of Contents

Author's Biographyp. vii
Prefacep. ix
1 Introduction to Syntactic Pattern Recognitionp. 1
1.1. Summaryp. 1
1.2. Introductionp. 1
1.3. Organization of This Bookp. 3
2 Introduction to Formal Languages and Automatap. 7
2.1. Summaryp. 7
2.2. Languages and Grammarsp. 7
Type 0 (unrestricted) grammarp. 9
Type 1 (context-sensitive) grammarp. 9
Type 2 (context-free) grammarp. 9
Type 3 (finite-state or regular) grammarp. 9
2.3. Finite-State Automatonp. 10
2.4. Earley's Parsingp. 14
2.5. Finite-State Grammatical Inferencep. 16
2.5.1. Inference of Canonical Finite-State Grammarp. 16
2.5.2. Inference of Finite-State Grammar Based on K-Tailsp. 17
2.6. String Distance Computationp. 18
3 Error-Correcting Finite-State Automaton for Recognition of Ricker Waveletsp. 21
3.1. Summaryp. 21
3.2. Introductionp. 21
3.3. Syntactic Pattern Recognitionp. 22
3.3.1. Training and Testing Ricker Waveletsp. 22
3.3.2. Location of Waveforms and Pattern Representationp. 25
3.4. Expanded Grammarsp. 25
3.4.1. General Expanded Finite-State Grammarp. 25
3.4.2. Restricted Expanded Finite-State Grammarp. 28
3.5. Minimum-Distance Error-Correcting Finite-State Parsingp. 31
3.6. Classification of Ricker Waveletsp. 32
3.7. Discussion and Conclusionsp. 37
4 Attributed Grammar and Error-Correcting Earley's Parsingp. 39
4.1. Summaryp. 39
4.2. Introductionp. 39
4.3. Attributed Primitives and Stringp. 41
4.4. Definition of Error Transformations for Attributed Stringsp. 41
4.5. Inference of Attributed Grammarp. 42
4.6. Minimum-Distance Error-Correcting Earley's Parsing for Attributed Stringp. 45
4.7. Experimentp. 47
5 Attributed Grammar and Match Primitive Measure (MPM) for Recognition of Seismic Waveletsp. 51
5.1. Summaryp. 51
5.2. Similarity Measure of Attributed String Matchingp. 51
5.3. Inference of Attributed Grammarp. 55
5.4. Top-Down Parsing Using Mpmp. 56
5.5. Experiments of Seismic Pattern Recognitionp. 58
5.5.1. Recognition of Seismic Ricker Waveletsp. 58
5.5.2. Recognition of Wavelets in Real Seismogramp. 60
5.6. Conclusionsp. 64
6 String Distance and Likelihood Ratio test for Detection of Candidate Bright Spotp. 65
6.1. Summaryp. 65
6.2. Introductionp. 65
6.3. Optimal Quantization Encodingp. 66
6.4. Likelihood Ratio Test (LRT)p. 67
6.5. Levenshtein Distance and Error Probabilityp. 68
6.6. Experiment at Mississippi Canyonp. 69
6.6.1. Likelihood Ratio Test (LRT)p. 72
6.6.2. Threshold for Global Detectionp. 72
6.6.3. Threshold for the Detection of Candidate Bright Spotp. 72
6.7. Experiment at High Islandp. 73
7 Tree Grammar and Automaton for Seismic Pattern Recognitionp. 75
7.1. Summaryp. 75
7.2. Introductionp. 75
7.3. Tree Grammar and Languagep. 77
7.4. Tree Automatonp. 78
7.5. Tree Representations of Patternsp. 84
7.6. Inference of Expansive Tree Grammarp. 85
7.7. Weighted Minimum-Distance Spectap. 86
7.8. Modified Maximum-Likelihood Spectap. 92
7.9. Minimum Distance Gectap. 94
7.10. Experiments on Input Testing Seismogramsp. 95
7.11. Discussion and Conclusionsp. 102
8 A Hierarchical Recognition System of Seismic Patterns and Future Studyp. 103
8.1. Summaryp. 103
8.2. Introductionp. 103
8.3. Syntactic Pattern Recognitionp. 107
8.3.1. Linking Processing and Segmentationp. 107
8.3.2. Primitive Recognitionp. 107
8.3.3. Training Patternsp. 108
8.3.4. Grammatical Inferencep. 109
8.3.5. Finite-state Error Correcting Parsingp. 109
8.4. Common-source Simulated Seismogram Resultsp. 110
8.5. Stacked Simulated Seismogram Resultsp. 117
8.6. Conclusionsp. 121
8.7. Future Studyp. 121
Referencesp. 123
Indexp. 131
Go to:Top of Page