Skip to:Content
|
Bottom
Cover image for Nanofabrication : PRINCIPLES TO LABORATORY PRACTICE
Title:
Nanofabrication : PRINCIPLES TO LABORATORY PRACTICE
Personal Author:
Series:
Optical sciences and applications of light
Physical Description:
xv, 299 pages : illustrations ; 26 cm.
ISBN:
9781498725576

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010345278 TK7874.843 S27 2017 Open Access Book Book
Searching...

On Order

Summary

Summary

This book is designed to introduce typical cleanroom processes, techniques, and their fundamental principles. It is written for the practicing scientist or engineer, with a focus on being able to transition the information from the book to the laboratory. Basic theory such as electromagnetics and electrochemistry is described in as much depth as necessary to understand and explain the current practice and their limitations. Examples from various areas of interest will be covered, such as the fabrication of photonic devices including photo detectors, waveguides, and optical coatings, which are not commonly found in other fabrication texts.


Author Notes

Andrew Sarangan is a professor and associate director of the Electro-Optics Graduate Program at the University of Dayton, Dayton, Ohio. Dr. Sarangan's current research interests include semiconductor optoelectronics, nanofabrication, and computational electromagnetics. He has developed graduate courses in nanofabrication,nanophotonics, optical thin films, and integrated optics. He is a senior member of the IEEE and the SPIE and a registered professional engineer in the state of Ohio. He is also an accomplished pilot and a certificated flight instructor.


Table of Contents

Series Prefacep. xi
Prefacep. xiii
Authorp. xv
Chapter 1 Introduction to Micro- and Nanofabricationp. 1
1.1 Introduction to Micro- and Nanofabricationp. 1
1.1.1 Importance of Understanding the Techniquesp. 1
1.1.2 Creative Problem Solvingp. 2
1.1.3 What Has Been Done by Others versus What You Can Dop. 2
1.1.4 Experiment versus Projectp. 2
1.1.5 Nano and the Mediap. 3
1.1.6 Carbon versus Silicon and Self-Assembly versus Micromachiningp. 3
1.1.7 Nanotechnology Is Oldp. 3
1.1.8 Moore's Prediction and Driving Forcesp. 4
1.1.9 Why Components Have to Be Smallp. 4
1.1.10 Nanofabrication Is a Multidisciplinary Sciencep. 5
1.1.11 Units of Measurep. 5
1.2 Cleanrooms for Device Fabrication: Basic Conceptsp. 5
1.2.1 Cleanroom Classification and Airflow Ratesp. 7
1.2.2 Particle Count Measurementp. 9
1.2.3 Service Accessp. 9
1.2.4 Humidity, Temperature, and Lightingp. 10
1.2.5 Safetyp. 10
Problemsp. 10
Laboratory Exercisep. 11
Referencesp. 11
Chapter 2 Fundamentals of Vacuum and Plasma Technologyp. 13
2.1 Fundamentals of Vacuump. 13
2.1.1 Conductancep. 15
2.1.2 Pumpingp. 16
2.1.3 Effect of a Vacuum Hosep. 18
2.1.4 Rough Vacuump. 19
2.1.5 High-Vacuum Pumpsp. 23
2.1.5.1 Turbo Molecular Pumpsp. 23
2.1.5.2 Cryo Pumpsp. 26
2.1.6 Leaksp. 29
2.1.7 Adsorption and Desorptionp. 29
2.1.8 Types of Pumpsp. 31
2.2 Pressure and Flow Measurementsp. 32
2.2.1 Pressure (or Vacuum) Measurementp. 32
2.2.2 Gas Flow Rate Measurementp. 36
2.3 Fundamentals of Plasmas for Device Fabricationp. 37
2.3.1 Parallel Plate Configurationp. 38
2.3.2 Electron and Bulk Gas Temperaturep. 42
2.3.3 Langmuir's Probep. 45
2.3.4 DC Ion Sputtering and Implantationp. 46
2.3.5 RF Plasmap. 47
2.3.6 Other Electrical Plasmasp. 50
Problemsp. 51
Laboratory Exercisesp. 51
Referencesp. 51
Chapter 3 Physical and Chemical Vapor Depositionp. 53
3.1 Physical Vapor Depositionp. 53
3.1.1 Thermal Evaporationp. 53
3.1.1.1 Resistance Heating Methodp. 55
3.1.1.2 Electron Beam Evaporationp. 55
3.1.1.3 Thermal Evaporation Rate from the Sourcep. 59
3.1.1.4 Deposition Rate and Distributionp. 60
3.1.1.5 E-Beam Evaporation of Dielectricsp. 61
3.1.1.6 Reactive Thermal Evaporationp. 62
3.1.1.7 Thermal Evaporation of Alloys and Compoundsp. 62
3.1.1.8 Ion-Assisted Depositionp. 62
3.1.2 Sputter Removal and Depositionp. 64
3.1.2.1 Sputter Removal Mechanismp. 65
3.1.2.2 Sputter Yieldp. 66
3.1.2.3 Magnetron Sputteringp. 69
3.1.2.4 Sputter Removal Ratep. 69
3.1.2.5 Sputter Deposition Ratep. 70
3.1.2.6 Dependence of Sputter Deposition Rate on Pressurep. 71
3.1.2.7 Energy of the Sputtered Atomsp. 71
3.1.2.8 Sputter Up versus Sputter Downp. 72
3.1.2.9 Compound Sputteringp. 73
3.1.2.10 Co-Sputteringp. 74
3.1.2.11 Reactive Sputteringp. 74
3.1.2.12 Thermal Evaporation versus Sputteringp. 75
3.1.3 Pulsed Laser Depositionp. 76
3.2 Chemical Vapor Depositionp. 77
3.2.1 Atmospheric Pressure Chemical Vapor Depositionp. 81
3.2.2 Low-Pressure Chemical Vapor Depositionp. 82
3.2.3 Plasma-Enhanced Chemical Vapor Depositionp. 83
3.2.4 Atomic Layer Depositionp. 84
3.3 Thin-Film Measurementsp. 85
3.3.1 Thickness Measurement with a Quartz Crystal Microbalancep. 85
3.3.1.1 Temperature Sensitivityp. 87
3.3.1.2 Tooling Factorp. 88
3.3.1.3 Film Stressp. 88
3.3.1.4 Deposition Energyp. 88
3.3.1.5 Density and z-Ratiop. 88
3.3.2 Thickness Measurement with a Stylus Profilerp. 89
3.3.3 Measurement of Optical Propertiesp. 89
3.3.4 Thin-Film Stressp. 89
3.3.4.1 Origins of Film Stressp. 90
3.3.4.2 Measurement of Stressp. 90
3.3.4.3 Compressive Stressp. 92
3.3.4.4 Tensile Stressp. 92
3.3.4.5 Stress Reductionp. 93
3.4 Thin-Film Materialsp. 93
3.4.1 Titaniump. 93
3.4.2 Chromiump. 93
3.4.3 Aluminump. 93
3.4.4 Copperp. 93
3.4.5 Goldp. 94
3.4.6 Silverp. 94
3.4.7 Platinump. 94
3.4.8 Nickelp. 94
3.4.9 Tungstenp. 94
3.4.10 Molybdenump. 94
3.4.11 Vanadiump. 94
3.4.12 Siliconp. 95
3.4.13 Germaniump. 95
3.4.14 Aluminum Oxidep. 95
3.4.15 Magnesium Fluoridep. 95
3.4.16 Silicon Dioxidep. 95
3.4.17 Titanium Dioxidep. 95
3.4.18 Niobium Oxidep. 95
3.4.19 Zinc Sulfidep. 96
3.4.20 Vanadium Oxidep. 96
Problemsp. 96
Laboratory Exercisesp. 96
Referencesp. 97
Chapter 4 Thin-Film Opticsp. 99
4.1 Antireflection Coatingsp. 99
4.1.1 Fresnel Reflectionp. 99
4.1.2 Single-Layer Antireflection Coatingp. 100
4.1.3 Two-Layer Quarter-Wave Film Designsp. 103
4.1.4 Two-Layer Non-Quarter-Wave Film Designsp. 105
4.1.5 Three-Layer Antireflection Designp. 108
4.2 Transfer Matrix Method for Modeling Optical Thin Filmsp. 108
4.3 High-Reflection Dielectric Coatingsp. 111
4.4 Metal Film Opticsp. 112
4.4.1 Reflectance Properties of Metalsp. 112
4.4.2 Antireflection for Metalsp. 114
4.4.3 High Optical Transmission through Metalsp. 117
4.5 Optical Thin-Film Depositionp. 120
Problemsp. 124
Laboratory Exercisesp. 125
Referencesp. 125
Chapter 5 Substrate Materialsp. 127
5.1 Siliconp. 128
5.1.1 Silicon Wafer Manufacturep. 128
5.1.1.1 Raw Materialp. 128
5.1.1.2 Crystal Growthp. 129
5.1.1.3 Ingot Processingp. 129
5.1.1.4 Wafer Sawp. 129
5.1.1.5 Etching, Lapping, and Polishingp. 129
5.1.1.6 Finished Silicon Wafersp. 130
5.1.2 Silicon Crystal Orientationsp. 130
5.1.2.1 (100) Planesp. 131
5.1.2.2 (110) Planesp. 131
5.1.2.3 (111) Planesp. 131
5.1.2.4 Other Crystal Planesp. 131
5.1.2.5 Crystal Orientations and Their Propertiesp. 131
5.1.2.6 (100) Waferp. 132
5.1.2.7 (110) Waferp. 132
5.2 Silicap. 134
5.3 Sapphirep. 134
5.4 Compound Semiconductorsp. 135
5.5 Properties of Substratesp. 136
Referencesp. 136
Chapter 6 Lithographyp. 139
6.1 Substrate Cleaning and Preparationp. 139
6.1.1 Acetone-Methanol-Isopropyl Alcohol (AMI) Cleaningp. 139
6.1.2 Piranha (Sulfuric Peroxide Mixture) Cleaningp. 140
6.1.3 RCA Cleaningp. 140
6.1.4 Buffered Oxide Etch (BOE) Cleanp. 140
6.1.5 Plasma Cleaningp. 140
6.1.6 Megasonic Cleaningp. 141
6.1.7 Evaluation of Surface Qualityp. 141
6.2 Spin Coatingp. 142
6.2.1 Stage 1: Dispense Stagep. 142
6.2.2 Stage 2: Spread Stagep. 142
6.2.3 Stage 3: Thin-Out Stagep. 143
6.2.4 Stage 4: Evaporation Stagep. 147
6.2.5 Edge Beadp. 149
6.2.6 Common Problems Encountered in Spin Coatingp. 149
6.2.7 Solvent Bake (Soft Bake)p. 151
6.3 Photomasksp. 152
6.3.1 Laser-Written Photomasksp. 152
6.3.2 Film Photomasksp. 154
6.3.3 Electron Beam-Written Photomasksp. 154
6.4 UV Light Sourcesp. 156
6.5 Contact Mask Lithographyp. 157
6.6 Projection Photolithographyp. 160
6.7 Basic Properties of Photoresistsp. 163
6.7.1 Components of Photoresistsp. 163
6.7.2 Effects of Moisture on Photoresist Performancep. 165
6.7.3 Developmentp. 166
6.7.4 Modeling the Optical Performance of Photoresistsp. 166
6.7.4.1 Dill Parametersp. 166
6.7.4.2 Diffusionp. 168
6.7.4.3 Numerical Shooting Method for Modeling the Optical Fieldp. 168
6.7.4.4 Solubility Modelp. 174
6.7.4.5 Quasi-Two-Dimensional Modelp. 175
6.7.4.6 Bottom Antireflection Coatingsp. 178
6.7.5 Negative-Tone Photoresistsp. 181
6.7.6 Image Reversalp. 181
6.7.7 Substrate Primingp. 182
6.7.8 Hard Bakep. 184
6.8 SU-8 Photoresistp. 184
6.9 Patterning by Lithographyp. 187
6.9.1 Etch-Down Patterningp. 187
6.9.2 Lift-Off Patterningp. 189
6.9.3 Bilayer Lift-Offp. 190
6.9.4 Etch-Down versus Lift-Off Patterningp. 190
6.9.4.1 Film Adhesionp. 190
6.9.4.2 Etch Chemistryp. 191
6.9.4.3 Linewidth Controlp. 191
6.9.4.4 Film Thicknessp. 191
6.9.4.5 Outgassingp. 192
6.9.5 Patterning by Planarizationp. 192
6.10 Laser Interference Lithographyp. 193
6.11 Resolution Enhancement Techniquesp. 195
6.11.1 Phase-Shifted Masksp. 196
6.11.2 Optical Proximity Correctionsp. 196
6.11.3 Self-Aligned Double Patterningp. 196
6.11.4 Directed Self-Assemblyp. 198
6.12 Extreme-UV Lithographyp. 198
6.13 Nonoptical Lithographyp. 199
6.13.1 Electron Beam Lithographyp. 199
6.13.2 Nanoimprint Lithographyp. 202
Problemsp. 203
Laboratory Exercisesp. 203
Referencesp. 204
Chapter 7 Wet Chemical and Plasma Etchingp. 209
7.1 Wet Chemical Etchingp. 209
7.1.1 Basic Principlesp. 209
7.1.2 Wet Chemical Etch of Selected Materialsp. 212
7.1.2.1 Silicon Dioxide Etchp. 212
7.3.2.1 Silicon Nitride Etchp. 214
7.1.2.1 Silicon Etchp. 215
7.1.2.2 Aluminum Etchp. 215
7.1.2.3 Copper Etchp. 215
7.1.2.4 Titanium Etchp. 215
7.1.2.7 Gold Etchp. 215
7.1.2.8 Silver Etchp. 215
7.1.3 Orientation-Dependent Wet Etching of Siliconp. 215
7.1.3.1 (100) Silicon Etch with KOHp. 215
7.1.3.2 (110) Silicon Etch with KOHp. 219
7.1.3.3 Other Elchants for Orientation-Dependent Etching of Siliconp. 220
7.2 Plasma Etchingp. 221
7.2.1 Basic Construction of a Plasma Etcherp. 222
7.2.2 Free Radicals and Ions in a Plasma and Their Rolesp. 223
7.2.3 Inductively Coupled Plasma Etchingp. 227
7.2.4 Substrate Temperaturep. 228
7.2.5 Silicon Etchingp. 228
7.2.5.1 SF 6 Plasma for Etching Siliconp. 229
7.2.5.2 CF 4 Plasma for Etching Siliconp. 231
7.2.5.3 Mixed Gas Fluorine Plasmas for Etching Siliconp. 232
7.2.5.4 CI 2 Plasma for Etching Siliconp. 233
7.2.6 Photoresist Erosion in a Plasma Etchp. 234
Problemsp. 237
Laboratory Exercisesp. 238
Referencesp. 238
Chapter 8 Doping, Surface Modifications, and Metal Contactsp. 241
8.1 Thermal Budgetp. 241
8.2 Doping by Thermal Diffusionp. 242
8.2.1 Vapor, Liquid, and Solid Dopant Sourcesp. 242
8.2.2 Calculation of Diffusion Profilesp. 246
8.2.3 Masking for Thermal Diffusionp. 252
8.3 Ion Implantationp. 254
8.3.1 Doping by Ion Implantationp. 254
8.3.2 Masking Materials for Ton Implantationp. 258
8.3.3 Implantation for Silicon-on-Insulator Substratesp. 258
8.4 Thermal Oxidation of Siliconp. 261
8.5 Metal Contacts to Semiconductorsp. 268
Referencesp. 275
Chapter 9 Metrology for Device Fabricationp. 279
9.1 Semiconductor Device Fabrication Metrologyp. 279
9.1.1 Substrate Defect Metrologyp. 279
9.1.2 Lithography Metrologyp. 279
9.1.3 Gate Dielectricsp. 282
9.1.4 Metrology for Ion Implantationp. 283
9.2 Interconnect Metrologyp. 285
9.2.1 Low-¿ Dielectric Film Metrologyp. 286
9.2.2 Metal Layer Metrologyp. 286
9.2.3 CMP Metrologyp. 286
Referencesp. 287
Indexp. 289
Go to:Top of Page