Skip to:Content
|
Bottom
Cover image for Silicon nanoelectronics
Title:
Silicon nanoelectronics
Publication Information:
Boca Raton : Taylor & Francis, 2006
ISBN:
9780824726331

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004706515 TK7874.8 S54 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Technological advancement in chip development, primarily based on the downscaling of the feature size of transistors, is threatening to come to a standstill as we approach the limits of conventional scaling. For example, when the number of electrons in a device's active region is reduced to less than ten electrons (or holes), quantum fluctuation errors will occur, and when gate insulator thickness becomes too insignificant to block quantum mechanical tunneling, unacceptable leakage will occur. Fortunately, there is truth in the old adage that whenever a door closes, a window opens somewhere else. In this case, that window opening is nanotechnology.

Silicon Nanoelectronics takes a look at at the recent development of novel devices and materials that hold great promise for the creation of still smaller and more powerful chips. Silicon nanodevices are positoned to be particularly relevant in consideration of the existing silicon process infrastructure already in place throughout the semiconductor industry and silicon's consequent compatibility with current CMOS circuits. This is reinforced by the nearly perfect interface that can exist between natural oxide and silicon.

Presenting the contributions of more than 20 leading academic and corporate researchers from the United States and Japan, Silicon Nanoelectronics offers a comprehensive look at this emergent technology. The text includes extensive background information on the physics of silicon nanodevices and practical CMOS scaling. It considers such issues as quantum effects and ballistic transport and resonant tunneling in silicon nanotechnology. A significant amount of attention is given to the all-important silicon single electron transistors and the devices that utilize them.

In offering an update of the current state-of-the-art in the field of silicon nanoelectronics, this volume serves well as a concise reference for students, scientists, engineers, and specialists in various fields, in


Author Notes

Shunri Oda , David Ferry


Table of Contents

David K. Ferry and Richard Akis and Matthew J. Gilbert and Stephen M. RameyDavid J. FrankHisao KawauraToshiro HiramotoHiroshi Mizuta and Katsuhiko Nishiguchi and Shunri OdaMichiharu Tabe and Hiroya Ikeda and Yasuhiko IshikawaL. Jay GuoSandip TiwariKazuo YanoKazuo Nakazato and Haroon AhmedYasuo Takahashi and Yukinori Ono and Akira Fujiwara and Hiroshi Inokawa
Chapter 1 Physics of Silicon Nanodevicesp. 1
1.1 Introductionp. 1
1.2 Small MOSFETsp. 2
1.2.1 The Simple One-Dimensional Theoryp. 3
1.2.2 Ballistic Transport in the MOSFETp. 4
1.3 Granularityp. 8
1.4 Quantum Behavior in the Devicep. 10
1.4.1 The Effective Potentialp. 10
1.4.1.1 Effective Carrier Wave Packetp. 11
1.4.1.2 Statistical Considerationsp. 13
1.4.2 Quantum Simulationsp. 16
1.4.2.1 The Device Structurep. 16
1.4.2.2 The Wave Function and Techniquep. 17
1.4.2.3 Resultsp. 21
1.5 Quantum Dot Single-Electron Devicesp. 23
1.6 Many-Body Interactionsp. 23
1.7 Acknowledgmentsp. 26
Referencesp. 26
Chapter 2 Practical CMOS Scalingp. 33
2.1 Introductionp. 33
2.2 CMOS Technology Overviewp. 33
2.2.1 Current CMOS Device Technologyp. 33
2.2.2 International Technology Roadmap for Semiconductors (ITRS) Projectionsp. 35
2.3 Scaling Principlesp. 36
2.2.1 General Scalingp. 37
2.3.2 Characteristic Scale Lengthp. 38
2.4 Exploratory Technologyp. 40
2.4.1 New Materialsp. 41
2.4.2 Fully Depleted SOIp. 42
2.4.3 Double-Gate and Multiple-Gate FET Structuresp. 43
2.5 Limits to Scalingp. 48
2.5.1 Quantum Mechanicsp. 48
2.5.2 Atomistic Effectsp. 50
2.5.3 Thermodynamic Effectsp. 53
2.5.4 Practical Considerationsp. 53
2.6 Power-Constrained Scaling Limitsp. 54
2.7 Summaryp. 58
Acknowledgmentsp. 58
Referencesp. 58
Chapter 3 The Scaling Limit of MOSFETs due to Direct Source-Drain Tunnelingp. 65
3.1 Introductionp. 65
3.2 EJ-MOSFETsp. 68
3.2.1 Concept of EJ-MOSFETsp. 68
3.2.2 Fabrication of the Device Structurep. 70
3.2.3 Basic Operationp. 72
3.3 Direct Source-Drain Tunnelingp. 75
3.3.1 Detection of the Tunneling Currentp. 75
3.3.2 Numerical Study of the Tunneling Currentp. 78
3.4 The Scaling Limit of MOSFETsp. 83
3.4.1 Estimation of Direct Source-Drain Tunneling in MOSFETsp. 83
3.4.2 Future Trends in Post-6-nm MOSFETsp. 85
3.5 Conclusionp. 86
Acknowledgmentsp. 86
Referencesp. 86
Chapter 4 Quantum Effects in Silicon Nanodevicesp. 89
4.1 Introductionp. 89
4.2 Quantum Effects in MOSFETsp. 90
4.2.1 Band Structures of Siliconp. 90
4.2.2 Surface Quantizationp. 90
4.2.3 Carrier Confinement in Thin SOI MOS Structuresp. 92
4.2.4 Mobility of Confined Carriersp. 92
4.3 Influences of Quantum Effects in MOSFETsp. 93
4.3.1 Threshold Voltage Increase in Bulk MOSFETsp. 93
4.3.2 Threshold Voltage Increase in FD-SOI MOSFETsp. 94
4.3.3 Mobility in Ultrathin FD-SOI MOSFETsp. 95
4.4 Quantum Effects in Ultranarrow Channel MOSFETsp. 95
4.4.1 Advantage of Quantum Effects in Ultranarrow Channel MOSFETsp. 95
4.4.2 Threshold Voltage Increase in n-Type Narrow Channel MOSFETsp. 95
4.4.3 Threshold Voltage Increase in n-Type and p-Type Narrow Channel MOSFETsp. 97
4.4.4 Threshold Voltage Adjustment Using Quantum Effectsp. 99
4.4.5 Mobility Enhancement due to Quantum Effectsp. 100
4.5 Summaryp. 102
Referencesp. 103
Chapter 5 Ballistic Transport in Silicon Nanostructuresp. 105
5.1 Introductionp. 105
5.2 Ballistic Transport in Quantum Point Contactsp. 106
5.3 Ballistic Transport in Ultra-Short Channel Vertical Silicon Transistorsp. 113
5.3.1 Fabrication of Nanoscale Vertical FETsp. 113
5.3.2 Conductance Quantization in Nanoscale Vertical FETsp. 117
5.3.3 Characteristics under a Magnetic Fieldp. 121
5.3.4 Effects of Cross-Sectional Channel Geometriesp. 125
5.4 Summary and Future Subjectsp. 128
Referencesp. 129
Chapter 6 Resonant Tunneling in Si Nanodevicesp. 133
6.1 Introductionp. 133
6.1.1 Outline of Resonant Tunnelingp. 133
6.1.1.1 Early Work on Resonant Tunnelingp. 133
6.1.1.2 Resonant Tunneling in Si-Based Materials - Si/SiGe and Si/SiO[subscript 2]p. 134
6.1.2 Quantum Confinement Effect in a Thin Si Layerp. 134
6.1.3 Double-Barrier Structures of SiO[subscript 2]/Si/SiO[subscript 2] Formed by Anisotropic Etchingp. 136
6.2 Resonant Tunneling in SiO[subscript 2]/Si/SiO[subscript 2]p. 139
6.2.1 Fabrication of an RTDp. 139
6.2.2 Resonant Tunneling in the Low Voltage Regionp. 141
6.2.3 Hot-Electron Storage in the High-Voltage Regionp. 143
6.2.4 Switching of Tunnel-Modes: Comparison with a Single Barrierp. 147
6.3 Zero-Dimensional Resonant Tunnelingp. 148
6.3.1 Coexistence of Coulomb Blockade and Resonant Tunnelingp. 148
6.3.2 Fabrication of a SiO[subscript 2]/Si-Dots/SiO[subscript 2] Structurep. 149
6.3.3 I-V Characteristics of an SiO[subscript 2]/Si-Dots/SiO[subscript 2] Tunnel Diodep. 151
Acknowledgmentp. 152
Referencesp. 152
Chapter 7 Silicon Single-Electron Transistor and Memoryp. 155
7.1 Introductionp. 155
7.1.1 Quantum Dot Transistorp. 156
7.2 Theoretical Backgroundp. 158
7.2.1 Energy of the Quantum Dot Systemp. 159
7.2.2 Conductance Oscillation and Potential Fluctuationp. 161
7.2.3 Transport under Finite Temperature and Finite Biasp. 162
7.3 Device Structure and Fabricationp. 165
7.4 Experimental Results and Analysisp. 166
7.4.1 Single-Electron Quantum-Dot Transistorp. 167
7.4.2 Single-Hole Quantum-Dot Transistorp. 168
7.4.3 Transport Characteristics under Finite Biasp. 169
7.4.4 Transport Through Excited Statesp. 172
7.5 Artificial Atomp. 173
7.6 Single Charge Trappingp. 174
7.7 Introduction to Memory Devicesp. 176
7.8 Floating Gate Schemep. 177
7.9 Single-Electron MOS memory (SEMM)p. 179
7.9.1 Structure of SEMMp. 179
7.9.2 Fabrication Procedurep. 180
7.9.3 Experimental Observationsp. 181
7.9.4 Analysisp. 183
7.9.5 Effects of Trap Statesp. 186
7.10 Effect of Thicker Tunnel Oxidep. 187
7.11 Discussionp. 190
Referencesp. 191
Chapter 8 Silicon Memories Using Quantum and Single-Electron Effectsp. 195
8.1 Introductionp. 195
8.2 Single-Electron Effectp. 196
8.3 Single-Electron Transistors and Their Memoriesp. 199
8.3.2 Memories by Scaling Floating Gates of Flash Structuresp. 200
8.4 Modeling of Transport: Tunnelingp. 204
8.4.1 Tunneling in Oxidep. 204
8.4.2 Quantum Kinetic Equationp. 205
8.4.3 Carrier Statistics and Charge Fluctuationsp. 207
8.5 Experimental Behavior of Memoriesp. 208
8.5.1 Percolation Effectsp. 212
8.5.2 Limitations in Use of Field Effectp. 212
8.5.3 Confinement and Random Effects in Semiconductorsp. 213
8.5.4 Variances due to Dimensionsp. 213
8.5.5 Limits due to Tunnelingp. 215
8.5.5.1 Tunneling in Oxidep. 215
8.5.5.2 Tunneling in Siliconp. 215
8.6 Can We Avoid Use of Collective Phenomena?p. 217
8.7 Summaryp. 219
Referencesp. 220
Chapter 9 SESO Memory Devicesp. 223
9.1 Introductionp. 223
9.1.1 How Nanotechnologies Solve Real Problemsp. 223
9.1.2 New Direction of Electronicsp. 223
9.2 Conventional Memory Technologiesp. 225
9.2.1 Classification of Conventional Memoriesp. 225
9.2.2 Origin of DRAM Power Consumptionp. 226
9.3 Bandgap Enlargement in Nanosiliconp. 227
9.4 SESO Transistorp. 230
9.4.1 History: Single-Electron Devices to SESOp. 230
9.4.2 Fabricated SESO Transistorp. 231
9.5 SESO Memoryp. 232
9.6 Memory-Technology Comparisonp. 236
9.7 SESO as On-Chip RAM Componentp. 237
9.8 Conclusionsp. 239
Acknowledgmentsp. 240
Referencesp. 240
Chapter 10 Few Electron Devices and Memory Circuitsp. 243
10.1 Introductionp. 243
10.2 Current Semiconductor Memoriesp. 244
10.2.1 Limitations of the DRAMp. 244
10.2.2 DRAM Gain Cellp. 246
10.3 A New DRAM Gain Cell - The PLEDMp. 247
10.3.1 PLEDTRp. 248
10.3.2 PLEDM Cellp. 253
10.4 Single-Electron Memoryp. 254
10.4.1 Single-Electron Devicesp. 256
10.4.2 Operation Principle of Single-Electron Memoryp. 257
10.4.2.1 Local Stabilityp. 257
10.4.2.2 Global Stabilityp. 260
10.4.3 Experimental Single-Electron Memoryp. 264
10.4.3.1 First Experimental Single-Electron Memoryp. 264
10.4.3.2 Silicon Single-Electron Memoryp. 269
10.4.4 Single-Electron Memory Arrayp. 273
10.5 Conclusionp. 276
Referencesp. 277
Chapter 11 Single-Electron Logic Devicesp. 281
11.1 Introductionp. 281
11.2 Single-Electron Transistor (SET)p. 282
11.3 Fabrication of Si SETsp. 286
11.4 Logic Circuit Applications of SETsp. 288
11.4.1 Fundamentals of SET Logicp. 289
11.4.2 Merged SET and MOSFET Logicp. 290
11.4.3 CMOS-Type Logic Circuitp. 292
11.4.4 Pass-Transistor Logicp. 294
11.4.5 Multigate SETp. 296
11.4.6 Multiple-Valued Operationp. 298
11.5 Conclusionp. 301
Referencesp. 301
Indexp. 305
Go to:Top of Page