Skip to:Content
|
Bottom
Cover image for Control design techniques in power electronics devices
Title:
Control design techniques in power electronics devices
Personal Author:
Series:
Power systems
Publication Information:
London : Springer, 2006
ISBN:
9781846284588

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010162749 TK7881.2 S57 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Control Design Techniques in Power Electronics Devices deals specifically with control theories relevant to the design of switched power electronics, for the most part, DC-DC converters and supplies, rectifiers of different kinds and inverters with varying topologies. The theoretical methods for designing controllers in linear and nonlinear systems are accompanied by case studies and examples showing their application. The book is introduced through the important topic of modeling switched power electronics as controlled dynamical systems. There are circuit layouts, schematics and actual closed-loop control responses, generated by applying the theory, from a representative group of the plants under discussion.

Among the control theories which feature in the book are: sliding mode control, feedback control by means of approximate linearization and nonlinear control design methods.

This monograph will be of interest to researchers, tutors and students in power systems and their related control problems.


Author Notes

Hebertt Sira-Ramirez has published his work in 4 books, 20 book chapters, many of them in Springer-Verlag volumes, 114 journal publications in credited, refereed, journals and over 192 specialized international conferences. He obtained his MSEE and his PhD, both from the Massachusetts Institute of Technology (Cambridge, USA) in 1972 and 1977, respectively. He worked as a professor, and researcher, for 28 years at the Universidad de Los Andes in Merida, Venezuela, and has worked for the last 7 years in a Scientific Research Institute in Mexico City (Cinvestav-IPN). He is a member of the IFAC Technical Committee on Non-Linear Control Systems.


Table of Contents

1 Introductionp. 1
Part I Modelling
2 Modelling of DC-to-DC Power Convertersp. 11
2.1 Introductionp. 11
2.2 The Buck Converterp. 13
2.2.1 Model of the Converterp. 14
2.2.2 Normalizationp. 15
2.2.3 Equilibrium Point and Static Transfer Functionp. 16
2.2.4 A Buck Converter Prototypep. 18
2.3 The Boost Converterp. 20
2.3.1 Model of the Converterp. 22
2.3.2 Normalizationp. 23
2.3.3 Equilibrium Point and Static Transfer Functionp. 23
2.3.4 Alternative Model of the Boost Converterp. 24
2.3.5 A Boost Converter Prototypep. 25
2.4 The Buck-Boost Converterp. 27
2.4.1 Model of the Converterp. 27
2.4.2 Normalizationp. 28
2.4.3 Equilibrium Point and Static Transfer Functionp. 29
2.4.4 A Buck-Boost Converter Prototypep. 30
2.5 The Non-inverting Buck-Boost Converterp. 31
2.5.1 Model of the Converterp. 31
2.5.2 Normalizationp. 32
2.5.3 Equilibrium Point and Static Transfer Functionp. 33
2.6 The Cúk Converterp. 34
2.6.1 Model of the Converterp. 35
2.6.2 Normalizationp. 36
2.6.3 Equilibrium Point and Static Transfer Functionp. 37
2.7 The Sepic Converterp. 38
2.7.1 Model of the Converterp. 39
2.7.2 Normalizationp. 39
2.7.3 Equilibrium Point and Static Transfer Functionp. 40
2.8 The Zeta Converterp. 41
2.8.1 Model of the Converterp. 41
2.8.2 Normalizationp. 43
2.8.3 Equilibrium Point and Static Transfer Functionp. 43
2.9 The Quadratic Buck Converterp. 44
2.9.1 Model of the Converterp. 44
2.9.2 Normalized Modelp. 45
2.9.3 Equilibrium Pointp. 45
2.9.4 Static Transfer Functionp. 46
2.10 The Boost-Boost Converterp. 46
2.10.1 Model of the Boost-Boost Converterp. 47
2.10.2 Average Normalized Modelp. 47
2.10.3 Equilibrium Point and Static Transfer Functionp. 47
2.10.4 Alternative Model of the Boost-Boost Converterp. 49
2.10.5 A Boost-Boost Converter Experimental Prototypep. 50
2.11 The Double Buck-Boost Converterp. 50
2.11.1 Model of the Double Buck-Boost Converterp. 51
2.11.2 Average Normalized Modelp. 51
2.11.3 Equilibrium Point and Static Transfer Functionp. 51
2.12 Power Converter Models with Non-ideal Componentsp. 52
2.13 A General Mathematical Model for Power Electronics Devicesp. 54
2.13.1 Some Illustrative Examples of the General Modelp. 56
Part II Controller Design Methods
3 Sliding Mode Controlp. 61
3.1 Introductionp. 61
3.2 Variable Structure Systemsp. 62
3.2.1 Control of Single Switch Regulated Systemsp. 62
3.2.2 Sliding Surfacesp. 64
3.2.3 Notationp. 65
3.2.4 Equivalent Control and the Ideal Sliding Dynamicsp. 65
3.2.5 Accessibility of the Sliding Surfacep. 67
3.2.6 Invariance Conditions for Matched Perturbationsp. 69
3.3 Control of the Boost Converterp. 71
3.3.1 Direct Controlp. 71
3.3.2 Indirect Controlp. 72
3.3.3 Simulationsp. 74
3.3.4 Experimental Implementationp. 75
3.4 Control of the Buck-Boost Converterp. 78
3.4.1 Direct Controlp. 79
3.4.2 Indirect Controlp. 80
3.4.3 Simulationsp. 81
3.5 Control of the Cúk Converterp. 82
3.5.1 Direct Controlp. 83
3.5.2 Indirect Controlp. 84
3.5.3 Simulationsp. 86
3.6 Control of the Zeta Converterp. 87
3.6.1 Direct Controlp. 88
3.6.2 Indirect Controlp. 88
3.6.3 Simulationsp. 90
3.7 Control of the Quadratic Buck Converterp. 91
3.7.1 Direct Controlp. 92
3.7.2 Indirect Controlp. 93
3.7.3 Simulationsp. 95
3.8 Multi-variable Casep. 95
3.8.1 Sliding Surfacesp. 97
3.8.2 Equivalent Control and Ideal Sliding Dynamicsp. 99
3.8.3 Invariance with Respect to Matched Perturbationsp. 100
3.8.4 Accessibility of the Sliding Surfacep. 101
3.9 Control of the Boost-Boost Converterp. 102
3.9.1 Direct Controlp. 103
3.9.2 Indirect Controlp. 104
3.9.3 Simulationsp. 105
3.9.4 Experimental Sliding Mode Control Implementationp. 105
3.10 Control of the Double Buck-Boost Converterp. 108
3.10.1 Direct Controlp. 109
3.10.2 Indirect Controlp. 110
3.10.3 Simulationsp. 111
3.11 ¿ - ¿ Modulationp. 112
3.11.1 ¿ - ¿ Modulatorsp. 113
3.11.2 Average Feedbacks and ¿ - ¿ -Modulationp. 115
3.11.3 A Hardware Realization of a ¿ - ¿-Modulatorp. 118
4 Approximate Linearization in the Control of Power Electronics Devicesp. 123
4.1 Introductionp. 123
4.2 Linear Feedback Controlp. 124
4.2.1 Pole Placement by Full State Feedbackp. 124
4.2.2 Pole Placement Based on Observer Designp. 126
4.2.3 Reduced Order Observersp. 128
4.2.4 Flatnessp. 130
4.2.5 Generalized Proportional Integral Controllersp. 133
4.2.6 Passivity Based Controlp. 136
4.2.7 A Hamiltonian Systems Viewpointp. 139
4.3 The Buck Converterp. 142
4.3.1 Generalities about the Average Normalized Modelp. 142
4.3.2 Controller Design by Pole Placementp. 144
4.3.3 Proportional-Derivative Control via State Feedbackp. 145
4.3.4 Trajectory Trackingp. 146
4.3.5 Fliess' Generalized Canonical Formsp. 150
4.3.6 State Feedback Control via Observer Designp. 152
4.3.7 GPI Controller Designp. 154
4.3.8 Passivity Based Controlp. 156
4.3.9 The Hamiltonian Systems Viewpointp. 159
4.3.10 Implementation of the Linear Passivity Based Control for the Buck Converterp. 162
4.4 The Boost Converterp. 168
4.4.1 Generalities about the Average Normalized Modelp. 168
4.4.2 Control via State Feedbackp. 172
4.4.3 Proportional-Derivative State Feedback Controlp. 174
4.4.4 Trajectory Trackingp. 176
4.4.5 Fliess' Generalized Canonical Formp. 181
4.4.6 State Feedback Control via Observer Designp. 182
4.4.7 GPI Controller Designp. 183
4.4.8 Passivity Based Controlp. 185
4.4.9 The Hamiltonian Systems Viewpointp. 187
4.5 The Buck-Boost Converterp. 189
4.5.1 Generalities about the Modelp. 189
4.5.2 State Feedback Controller Designp. 193
4.5.3 Dynamic Proportional-Derivative State Feedback Controlp. 195
4.5.4 Trajectory Trackingp. 198
4.5.5 Fliess' Generalized Canonical Formsp. 199
4.5.6 Control via Observer Designp. 200
4.5.7 GPI Controller Designp. 202
4.5.8 Passivity Based Controlp. 204
4.5.9 The Hamiltonian Systems Viewpointp. 205
4.5.10 Experimental Passivity based Control of the Buck-Boost Converterp. 207
4.6 The Cúk Converterp. 210
4.6.1 Generalities about the Modelp. 210
4.6.2 The Hamiltonian System Approachp. 213
4.7 The Zeta Converterp. 214
4.7.1 Generalities about the Modelp. 214
4.7.2 The Hamiltonian System Approachp. 218
4.8 The Quadratic Buck Converterp. 219
4.8.1 Generalities about the Modelp. 219
4.8.2 State Feedback Controller Designp. 223
4.8.3 The Hamiltonian System Approachp. 227
4.9 The Boost-Boost Converterp. 229
4.9.1 Generalities about the Modelp. 229
4.9.2 The Hamiltonian System Approachp. 233
5 Nonlinear Methods in the Control of Power Electronics Devicesp. 235
5.1 Introductionp. 235
5.2 Feedback Linearizationp. 236
5.2.1 Isidori's Canonical Formp. 236
5.2.2 Input-Output Feedback Linearizationp. 238
5.2.3 State Feedback Linearizationp. 240
5.2.4 The Boost Converterp. 243
5.2.5 The Buck-Boost Converterp. 246
5.2.6 The Cúk Converterp. 249
5.2.7 The Sepic Converterp. 254
5.2.8 The Zeta Converterp. 258
5.2.9 The Quadratic Buck Converterp. 261
5.3 Passivity Based Controlp. 261
5.3.1 The Boost Converterp. 263
5.3.2 The Buck-Boost Converterp. 266
5.3.3 The Cúk Converterp. 269
5.3.4 The Sepic Converterp. 272
5.3.5 The Zeta Converterp. 274
5.3.6 The Quadratic Back Converterp. 279
5.4 Exact Error Dynamics Passive Output Feedback Controlp. 282
5.4.1 A General Resultp. 282
5.4.2 The Boost Converterp. 286
5.4.3 Experimental Implementationp. 288
5.4.4 The Buck-Boost Converterp. 291
5.4.5 The Cúk Converterp. 293
5.4.6 The Sepic Converterp. 294
5.4.7 The Zeta Converterp. 298
5.4.8 The Quadratic Buck Converterp. 301
5.4.9 The Boost-Boost Converterp. 304
5.4.10 The Double Buck-Boost Converterp. 306
5.5 Error Dynamics Passive Output Feedbackp. 309
5.5.1 The Boost Converterp. 312
5.5.2 Experimental Resultsp. 315
5.6 Control via Fliess' Generalized Canonical Formp. 316
5.6.1 The Boost Converterp. 317
5.6.2 The Buck-Boost Converterp. 322
5.6.3 The Quadratic Buck Converterp. 326
5.7 Nonlinear Observers for Power Convertersp. 331
5.7.1 Full Order Observersp. 331
5.7.2 The Boost Converterp. 333
5.7.3 The Buck-Boost Converterp. 335
5.8 Reduced Order Observersp. 337
5.8.1 The Boost Converterp. 337
5.8.2 The Buck-Boost Converterp. 341
5.9 GPI Sliding Mode Controlp. 343
5.9.1 The Buck Converterp. 344
5.9.2 The Boost Converterp. 350
5.9.3 The Buck-Boost Converterp. 355
Part III Applications
6 DC-to-AC Power Conversionp. 361
6.1 Introductionp. 361
6.2 Nominal Trajectories in DC-to-AC Power Conversionp. 363
6.2.1 The Buck Converterp. 363
6.2.2 Two-Sided E - A Modulationp. 365
6.2.3 The Boost Converterp. 366
6.2.4 The Buck-Boost Converterp. 370
6.3 An Approximate Linearization Approachp. 371
6.3.1 The Boost Converterp. 371
6.3.2 The Buck-Boost Converterp. 373
6.4 A Flatness Based Approachp. 374
6.4.1 The Double Bridge Buck Converterp. 374
6.4.2 The Boost Converterp. 375
6.4.3 The Buck-Boost Converterp. 376
6.5 A Sliding Mode Control Approachp. 378
6.5.1 The Boost Converterp. 378
6.5.2 A Feasible Indirect Input Current Tracking Approachp. 378
6.6 Exact Tracking Error Dynamics Passive Output Feedback Controlp. 380
6.6.1 The Double Bridge Buck Converterp. 380
6.6.2 The Boost Converterp. 381
6.6.3 The Buck-Boost Converterp. 383
7 AC Rectifiersp. 385
7.1 Introductionp. 385
7.2 Boost Unit Power Factor Rectifierp. 386
7.2.1 Model of the Monophasic Boost Rectifierp. 386
7.2.2 The Control Objectivesp. 387
7.2.3 Steady State Considerationsp. 387
7.2.4 Exact Open Loop Tracking Error Dynamics and Controller Designp. 388
7.2.5 Simulationsp. 389
7.2.6 The Use of the Differential Flatness Property in the Passive Controller Designp. 389
7.2.7 Simulationsp. 392
7.3 Three Phase Boost Rectifierp. 392
7.3.1 The Three Phase Boost Rectifier Average Modelp. 393
7.3.2 A Static Passivity Based Controllerp. 395
7.3.3 Trajectory Planningp. 395
7.3.4 Switched Implementation of the Average Designp. 398
7.3.5 Simulationsp. 399
7.4 A Unit Power Factor Rectifier-DC Motor Systemp. 400
7.4.1 The Combined Rectifier-DC Motor Modelp. 400
7.4.2 The Exact Tracking Error Dynamics Passive Output Feedback Controllerp. 403
7.4.3 Trajectory Generationp. 403
7.4.4 Simulationsp. 405
7.5 A Three Phase Rectifier-DC Motor Systemp. 408
7.5.1 The Combined Three Phase Rectifier DC Motor Modelp. 408
7.5.2 The Exact Tracking Error Dynamics Passive Output Feedback Controllerp. 409
7.5.3 Trajectory Generationp. 410
7.5.4 Simulationsp. 412
Referencesp. 415
Indexp. 421
Go to:Top of Page