Skip to:Content
|
Bottom
Cover image for Millimeter-wave microstrip and printed circuit antennas
Title:
Millimeter-wave microstrip and printed circuit antennas
Personal Author:
Publication Information:
Norwood, MA : Artech House, 1991
ISBN:
9780890063330

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000002860066 TK7871.6 B43 1991 Open Access Book Book
Searching...
Searching...
30000002521890 TK7871.6 B43 1991 Open Access Book Book
Searching...

On Order

Summary

Summary

Provides information needed to design millimeter-wave microstrip and printed circuit antennas from analysis methods and materials selection to antennas for particular applications. Special focus is given to the issues that impact the ability to scale microwave frequency designs to the millimeter-wav


Author Notes

P. Bhartia, Ph.D., is director general at Defence Research Establishment Ottawa, Canada.

050


Table of Contents

Prefacep. xi
Chapter 1 Introductionp. 1
1.1 Single-Element Characteristicsp. 2
1.2 Printed Circuit and Microstrip Arraysp. 4
1.3 Organization of Textp. 7
Chapter 2 Analytical Techniques for Microstrip Antennasp. 9
2.1 Empirical Modelsp. 9
2.1.1 Transmission Line Modelp. 10
2.1.2 Cavity Modelp. 16
2.2 Semiempirical Modelsp. 19
2.2.1 Variational Approachp. 19
2.2.2 Generalized Variational Approachp. 20
2.2.3 Dual Integral Equation Approachp. 21
2.2.4 Electric Surface Current Modelp. 22
2.2.5 Hankel Transform Techniquep. 28
2.2.6 Reciprocity Methodp. 28
2.2.7 Generalized Edge Boundary Condition (GEBC) Techniquep. 29
2.3 Full-Wave Analysesp. 29
2.3.1 Moment Method in Space Domainp. 30
2.3.2 Moment Method in Spectral Domainp. 30
2.3.3 Transform-Domain Analysesp. 41
2.3.4 Mixed Potential Integral Equation (MPIE) Approachp. 41
2.3.5 Conjugate-Gradient Fast Fourier Transform (CGFFT) Techniquep. 42
Chapter 3 Materials and Substrate Selectionp. 47
3.1 Substrate Materials for Microstrip Antennasp. 47
3.2 Criteria for Substrate Selectionp. 48
3.2.1 Surface-Wave Excitationp. 49
3.2.2 Dispersion Effectsp. 51
3.2.3 Dielectric Loss and Copper Lossp. 52
3.2.4 Substrate Anisotropyp. 55
3.2.5 Environmental Considerationsp. 57
3.2.6 Mechanical Considerationsp. 58
3.2.7 Cost Considerationsp. 58
3.3 Recommendationsp. 58
Chapter 4 Design of Microstrip Radiating Elements at High Frequenciesp. 61
4.1 Mode Spectrum of Surface Waves Excited in the Microstrip Antennap. 62
4.2 Characteristics of Open-Circuited Microstrip Stub Radiator at High Frequenciesp. 65
4.3 Design of Printed Dipole over a Thick Grounded Dielectric Slabp. 73
4.3.1 Studies on Hertzian Microstrip Dipole over a Thick Grounded Dielectric Slabp. 75
4.3.2 Printed Dipole on a Dielectric Half-Spacep. 79
4.3.3 Full-Length Dipole on Grounded Dielectric Slabp. 81
4.3.4 Printed Dipole Antenna with Dielectric Coverp. 87
4.4 Design of Rectangular Patch Antenna Element Using Moment Method Solutionp. 95
4.5 Circular Patch Antenna with Surface-Wave Effectsp. 107
4.5.1 Circular Microstrip Antenna on Thin Substrate with Surface-Wave Effectsp. 108
4.5.2 Input Impedance of a Circular Patch Antenna over a Thick Substratep. 114
Chapter 5 Feed Structures for Microstrip Antenna Elements and Arraysp. 125
5.1 Single-Layer Open Type of Feed Systemsp. 127
5.1.1 Microstrip Feedp. 127
5.1.2 Microstrip Antenna Feed through a Gapp. 130
5.1.3 Dual-Polarized Microstrip Feedp. 130
5.1.4 Probe Feeding in Microstrip Antennasp. 131
5.1.5 Waveguide Iris-Microstrip Transitionp. 132
5.1.6 Side-Coupled Microstrip Feedp. 132
5.2 Double-Layered Closed Type of Feed Mechanism in Microstrip Antennasp. 134
5.2.1 Principle of Electromagnetically Coupled (ECM) Feeding of Microstrip Antenna through Suspended Line Configurationp. 135
5.2.2 Feeding by Aperture Couplingp. 137
5.2.3 Feed Transitionsp. 146
5.2.4 Insular Guide Feed to Microstrip Elementp. 150
5.3 Feed Configurations for Arraysp. 158
5.3.1 Constrained Feed Structurep. 159
5.3.2 Lens-Mode Feedsp. 166
5.4 Discontinuities at High Frequenciesp. 166
5.4.1 Frequency-Dependent Equivalent Circuit Approach for Microstrip Discontinuitiesp. 167
5.4.2 Full-Wave Analysis of Discontinuities Using Dyadic Green's Functionp. 176
Chapter 6 Wideband Microstrip Antenna Structuresp. 183
6.1 Single-Element Bandwidth Enhancementp. 183
6.1.1 Effect of Bandwidth on Parametric Changesp. 184
6.1.2 Improvement of Bandwidth by Parasitic Elementsp. 185
6.1.3 Multilayered Wideband Microstrip Antenna Structuresp. 194
6.2 Large Bandwidth Structuresp. 201
6.2.1 Wideband CP-PADS Antennap. 201
6.2.2 Bow-Tie Antenna as a Wideband Elementp. 203
6.2.3 Characteristics of Wideband Spiral Antennasp. 207
6.2.4 Tapered Slot Antenna (TSA)p. 211
6.3 Wideband Array Antennasp. 216
6.3.1 Series and Parallel Fed Microstrip Arraysp. 217
6.3.2 Traveling Wave Microstrip Antennasp. 219
6.3.3 Electromagnetically Coupled Log-Periodic Microstrip Array Antennap. 220
Chapter 7 Design and Analysis of Microstrip Antenna Arrays at High Frequenciesp. 227
7.1 Design of Linear Antenna Arraysp. 228
7.1.1 Design of Comb-Line Array with Microstrip Stubsp. 229
7.1.2 Linear Array Design with Microstrip Patchesp. 240
7.1.3 Linear Array with Capacitively Coupled Fingersp. 247
7.1.4 Linear Array with Hybrid Microstrip Insular Feederp. 249
7.2 Design of Planar Array Antennasp. 252
7.2.1 Infinite Array with Printed Dipole Radiating Elementsp. 254
7.2.2 Infinite Array of Rectangular Microstrip Patchesp. 260
7.2.3 Finite Planar Arrays with Corporate Feed Arrangementp. 264
7.2.4 Finite Planar Array of Printed Dipole Elementsp. 267
7.2.5 Mutual Coupling Effect in Microstrip Arrays Printed over Thick Dielectric Substratesp. 275
7.2.6 Printed Dipole Planar Array with Insular Guide Feederp. 282
7.2.7 Printed Lens Arrays on an Ungrounded Dielectric Substratep. 286
7.3 Monopulse Printed Circuit Antennap. 290
7.4 Monolithic Integrated Phased Arraysp. 295
7.4.1 Design Considerationsp. 296
7.4.2 Array Architecture and its Subsystemsp. 299
7.4.3 Phased Array Examplesp. 303
Bibliographyp. 311
List of Symbolsp. 315
Indexp. 319
Go to:Top of Page