Skip to:Content
|
Bottom
Cover image for Bubbles, drops, and particles in non-Newtonian fluids
Title:
Bubbles, drops, and particles in non-Newtonian fluids
Personal Author:
Series:
Chemical industries ; 113
Edition:
2nd ed.
Publication Information:
Boca Raton, FL : CRC Taylor & Francis, 2007
ISBN:
9780824723293

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010132476 QC189.5 C43 2007 Open Access Book Book
Searching...
Searching...
30000010214983 QC189.5 C43 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Bubbles, Drops, and Particles in Non-Newtonian Fluids, Second Edition continues to provide thorough coverage of the scientific foundations and the latest advances in particle motion in non-Newtonian media. The book demonstrates how dynamic behavior of single particles can yield useful information for modeling transport processes in complex multiphase flows.

Completely revised and expanded, this second edition covers macroscopic momentum and heat/mass transfer from a single rigid or fluid particle or ensembles of particles involving strong inter-particle interactions including packed beds, fluidized beds, and porous media with different types of non-Newtonian fluids. It reflects advances made since the publication of the previous, bestselling edition with new material on topics such as extensional flow; time-independent, time-dependent and visco-elastic fluids; free settling behavior of non-spherical particles; and particle motion in visco-elastic and visco-plastic fluids, boundary layer flows, flows in porous media, and falling object rheometry.

An excellent reference and handbook dealing with the technological aspects of non-Newtonian materials encountered in nature and in technology, this book highlights qualitative differences between the response of a Newtonian and non-Newtonian fluids in the complex flows encountered in processing applications.


Table of Contents

Chapter 1 Introductionp. 1
1.1 Scope and Organizationp. 5
Chapter 2 Non-Newtonian Fluid Behaviorp. 9
2.1 Introductionp. 9
2.2 Definition of a Newtonian Fluidp. 10
2.3 Non-Newtonian Fluidsp. 14
2.3.1 Time-Independent Behaviorp. 15
2.3.1.1 Shear-Thinning or Pseudoplastic Fluidsp. 15
2.3.1.2 Visco-Plastic Fluidsp. 22
2.3.1.3 Shear-Thickening Fluidsp. 26
2.3.2 Time-Dependent Behaviorp. 28
2.3.2.1 Thixotropyp. 29
2.3.2.2 Rheopexy or Negative Thixotropyp. 30
2.3.3 Visco-Elastic Behavior of Fluidsp. 32
2.3.3.1 Normal Stress Effects in Steady Shearing Flowsp. 33
2.3.3.2 Elongational Flowp. 37
2.3.3.3 Mathematical Models for Visco-Elastic Behaviorp. 40
2.4 Dimensional Considerations in the Fluid Mechanics of Visco-Elastic Fluidsp. 42
2.5 Experimental Techniques: Rheometryp. 45
2.6 Conclusionsp. 46
Nomenclaturep. 47
Chapter 3 Rigid Particles in Time-Independent Liquids without a Yield Stressp. 49
3.1 Introductionp. 49
3.2 Governing Equations for a Spherep. 50
3.3 Spherical Particles in Newtonian Fluidsp. 53
3.3.1 Drag Forcep. 54
3.3.2 Free-Fail Velocityp. 56
3.3.3 Unsteady Motionp. 57
3.4 Spheres in Shear-Thinning Liquidsp. 59
3.4.1 Drag Forcep. 59
3.4.1.1 Theoretical Developments in Creeping Flow Regionp. 59
3.4.1.2 Experimental Resultsp. 76
3.4.1.3 Drag Force at High Reynolds Numbersp. 85
3.4.2 Free-Fall Velocityp. 93
3.4.3 Flow Fieldp. 94
3.4.4 Unsteady Motionp. 95
3.4.5 Effect of Imposed Fluid Motionp. 98
3.5 Spheres in Shear-Thickening Liquidsp. 100
3.6 Drag on Light Spheres Rising in Pseudoplastic Mediap. 101
3.7 Pressure Drop Due to a Settling Spherep. 103
3.8 Nonspherical Particlesp. 104
3.8.1 Introductionp. 104
3.8.2 Drag Forcep. 105
3.8.2.1 Newtonian Fluidsp. 105
3.8.2.2 Shear-Thinning Liquidsp. 109
3.9 Conclusionsp. 120
Nomenclaturep. 121
Chapter 4 Rigid Particles in Visco-Plastic Liquidsp. 123
4.1 Introductionp. 123
4.2 Spheres in Visco-Plastic Liquidsp. 129
4.2.1 Static Equilibriump. 129
4.2.2 Flow Fieldp. 130
4.2.3 Drag Forcep. 136
4.2.3.1 Theoretical Developmentsp. 136
4.2.3.2 Experimental Correlationsp. 141
4.2.4 Values of Yield Stress Used in Correlationsp. 147
4.2.5 Time-Dependence of Velocity in Visco-Plastic Fluidsp. 149
4.3 Flow Past a Circular Cylinderp. 152
4.4 Flow Normal to a Platep. 157
4.5 Nonspherical Particlesp. 158
4.6 Conclusionsp. 159
Nomenclaturep. 159
Chapter 5 Rigid Particles in Visco-Elastic Fluidsp. 161
5.1 Introductionp. 161
5.2 Flow over a Spherep. 162
5.2.1 Theoretical Developmentsp. 168
5.2.1.1 Drag Force on an Unbounded ([Beta] = 0) Sphere in Creeping Region (Re [right arrow] 0)p. 168
5.2.1.2 Drag Force on a Sphere for [Beta] = 0.5 and Re [right arrow] 0: The Benchmark Problemp. 172
5.2.1.3 Wake Phenomenonp. 175
5.2.2 Experimental Resultsp. 177
5.2.2.1 Shear-Thinning Visco-Elastic Liquidsp. 177
5.2.2.2 Nonshear-Thinning Visco-Elastic Liquidsp. 182
5.2.3 The Time Effectp. 185
5.2.4 Velocity Overshootp. 186
5.2.5 Drag Reducing Fluidsp. 188
5.3 Flow over a Long Circular Cylinderp. 190
5.4 Interaction between Viscoelasticity, Particle Shape, Multiple Particles, Confining Boundaries, and Imposed Fluid Motionp. 194
5.5 Conclusionsp. 200
Nomenclaturep. 201
Chapter 6 Fluid Particles in Non-Newtonian Mediap. 203
6.1 Introductionp. 203
6.2 Formation of Fluid Particlesp. 205
6.2.1 Bubblesp. 205
6.2.1.1 Davidson-Schuler Modelp. 205
6.2.1.2 Kumar-Kuloor Modelp. 207
6.2.2 Dropsp. 212
6.2.2.1 Criterion I: Low Viscosity Systemsp. 214
6.2.2.2 Criterion II: High Viscosity Systemsp. 215
6.2.3 Disintegration (or Break Up) of Jets and Sheetsp. 217
6.2.4 Growth or Collapse of Bubblesp. 218
6.3 Shapes of Bubbles and Drops in Free Rise or Fallp. 221
6.3.1 Newtonian Continuous Mediap. 221
6.3.2 Non-Newtonian Continuous Mediap. 224
6.4 Terminal Velocity-Volume Behavior in Free Motionp. 239
6.5 Drag Behavior of Single Particlesp. 246
6.5.1 Theoretical Developmentsp. 246
6.5.1.1 Newtonian Fluidsp. 248
6.5.1.2 Shear-Thinning Continuous Phasep. 251
6.5.1.3 Visco-Elastic Continuous Phasep. 258
6.5.1.4 Non-Newtonian Dropsp. 259
6.5.2 Experimental Resultsp. 260
6.6 Bubble and Drop Ensembles in Free Motionp. 264
6.7 Coalescence of Bubbles and Dropsp. 267
6.7.1 Bubble Coalescencep. 268
6.7.2 Drop Coalescencep. 271
6.8 Breakage of Dropsp. 272
6.9 Motion and Deformation of Bubbles and Drops in Confined Flowsp. 273
6.10 Conclusionsp. 275
Nomenclaturep. 276
Chapter 7 Non-Newtonian Fluid Flow in Porous Media and Packed Bedsp. 279
7.1 Introductionp. 279
7.2 Porous Mediump. 281
7.2.1 Definition of a Porous Medium, its Classification and Examplesp. 281
7.2.2 Description of a Porous Mediump. 282
7.3 Newtonian Liquidsp. 285
7.3.1 Flow Regimesp. 286
7.3.2 Pressure Loss - Throughput Relationshipp. 288
7.3.2.1 Dimensionless Empirical Correlationsp. 290
7.3.2.2 The Conduit or Capillary Modelsp. 293
7.3.2.3 The Submerged Objects Models or Drag Theoriesp. 298
7.3.2.4 Use of the Field Equations for Flow through a Porous Mediump. 304
7.3.2.5 Flow in Periodically Constricted Tubesp. 304
7.3.2.6 Volume Averaging of the Navier-Stokes Equationsp. 306
7.3.3 Wall Effectsp. 307
7.3.4 Effects of Particle Shape, Particle Roughness, and Size Distributionp. 312
7.3.5 Fibrous Porous Mediap. 314
7.3.6 Theoretical Treatmentsp. 319
7.3.6.1 Flow Parallel to an Array of Rodsp. 319
7.3.6.2 Transverse Flow over an Array of Rodsp. 320
7.3.6.3 Creeping Row Regionp. 320
7.3.6.4 Inertial Effectsp. 324
7.4 Non-Newtonian Fluidsp. 326
7.4.1 Flow Regimesp. 341
7.4.2 Pressure Loss for Generalized Newtonian Fluidsp. 342
7.4.2.1 The Capillary Modelp. 342
7.4.2.2 Submerged Object Models or Drag Theoriesp. 356
7.4.2.3 Volume Averaging of Equationsp. 360
7.4.2.4 Other Methodsp. 361
7.4.3 Visco-Elastic Effects in Porous Mediap. 362
7.4.4 Dilute/Semidilute Drag Reducing Polymer Solutionsp. 368
7.4.5 Wall Effectsp. 372
7.4.6 Effect of Particle Shape and Size Distributionp. 373
7.4.7 Flow in Fibrous Mediap. 374
7.4.7.1 Generalized Newtonian fluidsp. 374
7.4.7.2 Visco-Elastic Fluidsp. 380
7.4.8 Mixing in Packed Bedsp. 381
7.5 Miscellaneous Effectsp. 381
7.5.1 Polymer Retention in Porous Mediap. 382
7.5.2 Slip Effectsp. 384
7.5.3 Flow-Induced Mechanical Degradation of Flexible Molecules in Solutionsp. 386
7.6 Two-Phase Gas/Liquid Flowp. 388
7.7 Conclusionsp. 391
Nomenclaturep. 392
Chapter 8 Fluidization and Hindered Settlingp. 395
8.1 Introductionp. 395
8.2 Two-Phase Fluidizationp. 397
8.2.1 Minimum Fluidization Velocityp. 397
8.2.1.1 Definitionp. 397
8.2.1.2 Prediction of V[subscript mf]p. 398
8.2.2 Bed Expansion Behaviorp. 406
8.2.2.1 Inelastic Non-Newtonian Systemsp. 410
8.2.3 Effect of Visco-Elasticityp. 421
8.3 Three-Phase Fluidized Bedsp. 423
8.3.1 Introductionp. 423
8.3.2 Minimum Fluidization Velocityp. 424
8.3.3 Bed Expansion Behaviorp. 426
8.3.4 Gas Holdupp. 427
8.4 Sedimentation or Hindered Settlingp. 427
8.4.1 Non-Newtonian Studiesp. 431
8.5 Conclusionsp. 434
Nomenclaturep. 435
Chapter 9 Heat and Mass Transfer in Particulate Systemsp. 437
9.1 Introductionp. 437
9.2 Boundary Layer Flowsp. 449
9.2.1 Platesp. 450
9.2.1.1 Forced Convectionp. 450
9.2.1.2 Free Convectionp. 456
9.2.1.3 Mixed Convectionp. 463
9.2.2 Cylindersp. 465
9.2.2.1 Forced Convectionp. 465
9.2.2.2 Free Convectionp. 469
9.2.2.3 Mixed Convectionp. 471
9.2.3 Spheresp. 473
9.2.3.1 Forced Convectionp. 473
9.2.3.2 Free Convectionp. 480
9.2.3.3 Mixed Convectionp. 486
9.3 Visco-Elastic Effects in Boundary Layersp. 489
9.3.1 Forced Convectionp. 489
9.3.2 Free Convectionp. 493
9.4 Bubblesp. 495
9.4.1 Large Peclet Number (Pe [greater than greater than] 1)p. 496
9.4.2 Small Peclet Number (Pe [less than less than] 1)p. 498
9.5 Dropsp. 499
9.6 Ensembles of Bubbles and Dropsp. 501
9.7 Fixed Bedsp. 504
9.8 Liquid-Solid Fluidized Bedsp. 510
9.9 Three-Phase Fluidized Bedsp. 511
9.10 Tube Bundlesp. 513
9.11 Conclusionsp. 514
Nomenclaturep. 515
Chapter 10 Wall Effectsp. 521
10.1 Introductionp. 521
10.2 Definitionp. 522
10.3 Rigid Spheresp. 523
10.3.1 Newtonian Fluidsp. 523
10.3.1.1 Theoretical Treatmentsp. 523
10.3.1.2 Experimental Results and Correlationsp. 527
10.3.2 Inelastic Non-Newtonian Liquidsp. 535
10.3.2.1 Theoretical and Numerical Treatmentsp. 535
10.3.2.2 Experimental Studiesp. 537
10.3.3 Visco-Plastic Liquidsp. 542
10.3.4 Visco-Elastic Liquidsp. 544
10.3.4.1 Boger Fluidsp. 545
10.4 Nonspherical Rigid Particlesp. 546
10.4.1 Newtonian Liquidsp. 546
10.4.2 Inelastic Non-Newtonian Liquidsp. 548
10.5 Drops and Bubblesp. 549
10.5.1 Newtonian Continuous Phasep. 550
10.5.1.1 Low Reynolds Number Regimep. 550
10.5.1.2 High Reynolds Number Regimep. 551
10.5.2 Non-Newtonian Continuous Phasep. 552
10.6 Conclusionsp. 553
Nomenclaturep. 554
Chapter 11 Falling Object Rheometryp. 557
11.1 Introductionp. 557
11.2 Falling Ball Methodp. 557
11.2.1 Newtonian Fluidsp. 557
11.2.2 Non-Newtonian Fluidsp. 559
11.2.2.1 Zero-Shear Viscosityp. 560
11.2.2.2 Shear-Dependent Viscosityp. 568
11.2.2.3 Yield Stressp. 570
11.2.2.4 Characteristic Time for Visco-Elastic Fluidsp. 573
11.3 Rolling Ball Methodp. 574
11.3.1 Newtonian Fluidsp. 574
11.3.2 Non-Newtonian Fluids (Shear-Dependent Viscosity)p. 574
11.3.3 Yield Stressp. 576
11.4 Rotating Sphere Viscometerp. 576
11.5 Falling Cylinder Viscometerp. 578
11.5.1 Newtonian Fluidsp. 578
11.5.2 Non-Newtonian Fluidsp. 581
11.5.1.1 Shear-Dependent Viscosityp. 581
11.5.1.2 Yield Stressp. 583
11.6 Conclusionsp. 584
Nomenclaturep. 584
Referencesp. 587
Author Indexp. 723
Subject Indexp. 761
Go to:Top of Page