Skip to:Content
|
Bottom
Cover image for Structural performance : probability-based assessement
Title:
Structural performance : probability-based assessement
Personal Author:
Publication Information:
London : ISTE ; Hoboken, N.J : Wiley, c2011
Physical Description:
xiii, 429 p. : ill. ; 24 cm.
ISBN:
9781848212367

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010277507 TA640.2 C74 2011 Open Access Book Book
Searching...

On Order

Summary

Summary

This book covers the development of efficient methods for the assessment and the management of civil structures is today a major challenge from economical, social and environmental aspects. Tools for handling uncertainties in loads, geometry, material properties, construction and operating conditions are nowadays essential.

Covers the key concepts across topics including probability theory and statistics, structural safety, performance-based assessment, modelling uncertainties and principles of decision theory.


Author Notes

Christian Cremona is in charge of the civil engineering and construction group in the direction for research and innovation in the French Ministry for Sustainable Development.


Table of Contents

Prefacep. xi
Chapter 1 Concepts from Probability Theory and Statisticsp. 1
1.1 The role of probability in civil engineeringp. 1
1.2 Physical and statistical uncertaintiesp. 2
1.3 Axiomaticsp. 3
1.3.1 Probabilitiesp. 3
1.3.2 Axiomsp. 3
1.3.3 Consequencesp. 5
1.3.4 Conditional probabilitiesp. 5
1.4 Random variables - distributionsp. 8
1.4.1 Definitionsp. 8
1.4.2 Samplingp. 8
1.4.3 Probability density functionp. 10
1.4.4 Main descriptors of a random variablep. 11
1.4.5 Joint variablesp. 15
1.4.6 Independent variablesp. 16
1.4.7 Correlation coefficientp. 16
1.4.8 Functions of random variablesp. 18
1.4.9 Approximate momentsp. 20
1.5 Useful random variablesp. 21
1.5.1 Discrete variablesp. 21
1.5.2 Normal distributionp. 25
1.5.3 Lognormal distributionp. 26
1.5.4 Beta distributionp. 28
1.5.5 Exponential distributionp. 29
1.5.6 Gamma distributionp. 30
1.5.7 tudent's t-distributionp. 31
1.6 Limit theoremsp. 31
1.6.1 Law of large numbersp. 32
1.6.2 Limit theoremsp. 35
1.7 Modeling random variablesp. 38
1.7.1 Point estimationp. 39
1.7.2 Interval estimationp. 43
1.7.3 Estimation of fractilesp. 46
1.7.4 Estimation of the distributionp. 48
1.8 Distribution of extremesp. 51
1.9 Significance testingp. 58
1.9.1 Type I and II errorsp. 60
1.9.2 Usual testsp. 61
1.10 Bayesian analysisp. 65
1.10.1 A priori and a posteriori distributionsp. 66
1.10.2 Updating estimatorsp. 68
1.10.3 Bayesian networksp. 70
1.11 Stochastic processesp. 74
1.11.1 Basic principlesp. 74
1.11.2 Markovian chainsp. 75
1.11.3 State probabilityp. 76
1.11.4 Time between stagesp. 78
Chapter 2 Structural Safety, Performance and Riskp. 81
2.1 Introductionp. 81
2.2 Safety and riskp. 82
2.2.1 Concepts of safetyp. 82
2.2.2 Concept of risk related to a danger or threatp. 83
2.2.3 Risk assessmentp. 84
2.2.4 Hazardp. 85
2.3 Risk evaluation and acceptable riskp. 87
2.3.1 Risk assessmentp. 87
2.3.2 Acceptable riskp. 89
2.4 Risk-based managementp. 96
2.4.1 Strategiesp. 96
2.4.2 Risk analysisp. 96
2.4.3 Legal point of view for a risk-based approachp. 104
2.5 Examples of failure: bridgesp. 105
2.6 From safety to performancep. 110
2.6.1 Functions of a structurep. 110
2.6.2 Performancep. 112
2.6.3 Evolution of structural functionalityp. 119
2.6.4 Consequences of performance lossesp. 121
2.6.5 Generalization of the concept of riskp. 121
2.7 Human errorsp. 122
Chapter 3 Performance-based Assessmentp. 125
3.1 Analysis methods and structural safetyp. 125
3.1.1 Allowable stress principlep. 128
3.1.2 Limit states and partial factorsp. 128
3.1.3 Probability-based approachp. 132
3.2 Safety and performance principlesp. 134
3.2.1 New structuresp. 135
3.2.2 Existing structuresp. 135
3.3 Invariant measuresp. 136
3.4 Reliability theoryp. 138
3.4.1 Basic problemp. 138
3.4.2 Convolution integralp. 139
3.4.3 Normal variablesp. 140
3.4.4 Geometric expression of the reliability indexp. 142
3.4.5 Joint distribution representationp. 145
3.4.6 Limit state with more than two uncorrelated normal variablesp. 145
3.4.7 Limit state with correlated variablesp. 148
3.5 General formulationp. 150
3.5.1 Failure component-failure modep. 150
3.5.2 Safety margins - limit state functionsp. 150
3.5.3 Calculation methodsp. 151
3.5.4 Basler-Cornell indexp. 152
3.5.5 Hasofer-Lind indexp. 158
3.5.6 Rackwitz-Fiessler algorithmp. 161
3.5.7 Isoprobability transformationsp. 162
3.5.8 Calculation of the failure probabilityp. 168
3.5.9 Monte-Carlo methodsp. 172
3.5.10 Response surfacesp. 176
3.5.11 Sensitivity measuresp. 183
3.6 System reliabilityp. 187
3.6.1 Mathematical conceptsp. 190
3.6.2 Calculation of the system probability of failurep. 199
3.6.3 Robustness and vulnerabilityp. 205
3.7 Determination of collapse/failure mechanismsp. 208
3.7.1 Generation of safety margins for truss structuresp. 208
3.7.2 P-unzipping methodp. 213
3.8 Calibration of partial factorsp. 217
3.9 Nature of a probabilistic calculationp. 224
3.10 Failure probabilities and acceptable risksp. 225
3.10.1 Acceptable failure probabilitiesp. 225
3.10.2 Concept of acceptable riskp. 230
3.10.3 Remarksp. 233
Chapter 4 Structural Assessment of Existing Structuresp. 235
4.1 Introductionp. 235
4.2 Assessment rulesp. 236
4.3 Limits when using design rulesp. 236
4.4 Main stages in structural assessmentp. 237
4.5 Structural safety assessmentp. 239
4.5.1 Basic conceptp. 240
4.5.2 First approachp. 240
4.5.3 Second approachp. 242
4.5.4 Third approachp. 244
4.5.5 Fourth approachp. 250
4.5.6 Implementing rating factorsp. 258
4.6 General remarks on the methodsp. 260
Chapter 5 Specificities of Existing Structuresp. 261
5.1 Loadsp. 261
5.1.1 Introductionp. 261
5.1.2 Stochastic processesp. 264
5.1.3 Spatial variabilityp. 285
5.1.4 Load combinationsp. 286
5.1.5 Permanent loadsp. 288
5.1.6 Live loadsp. 291
5.1.7 Environmental loadsp. 298
5.1.8 Exceptional loadsp. 325
5.2 Resistancep. 331
5.2.1 Material properties and uncertaintiesp. 332
5.2.2 Properties of reinforcing and prestressing steelp. 334
5.2.3 properties of structural steelp. 340
5.2.4 Properties of concretep. 341
5.3 Geometric variabilityp. 348
5.4 Scale effectsp. 351
Chapter 6 Principles of Decision Theoryp. 355
6.1 Introductionp. 355
6.2 The decision modelp. 356
6.2.1 Decision treep. 356
6.2.2 Decision criterionp. 360
6.2.3 Terminal decision analysisp. 361
6.2.4 Information valuep. 363
6.3 Controls and inspectionsp. 364
6.3.1 Detection probability: a discrete casep. 367
6.3.2. Detection probability: a continuous casep. 375
6.3.3 Load testsp. 381
6.4 Maintenance optimizationp. 384
6.4.1 Identification of degradations and failure modesp. 387
6.4.2 Decision process and RBI analysisp. 389
6.4.3 Maintenance typesp. 390
6.5 Life cycle cost analysisp. 391
6.5.1 Discount calculationsp. 392
6.5.2 Discount ratep. 394
6.5.3 Some results from discounting analysisp. 396
6.5.4 Condition, working lifetime and life cyclesp. 398
6.6 Maintenance strategiesp. 403
6.6.1 Corrective maintenancep. 404
6.6.2 Systematic maintenancep. 405
6.6.3 Conditional maintenancep. 406
Bibliographyp. 413
Indexp. 423
Go to:Top of Page