Skip to:Content
|
Bottom
Cover image for Polarization optics in telecommunications
Title:
Polarization optics in telecommunications
Personal Author:
Series:
Springer series in optical sciences, 101
Publication Information:
Berlin : Springer-Verlag, 2005
ISBN:
9780387224930

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004715250 TK5103.592.F52 D35 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

I have written this book to fill a void between theory and practice, a void that I perceived while conducting my own research and development of components and instruments over the last years. In the chapters that follow I have pulled materials from the technical and patent literature that are relevant to the understanding and practice of polarization optics in telecommunications, material that is often known by the respective experts in industry and academia but is rarely if ever found in one place. By bringing this material into one monograph, and by applying a single formal ism throughout, I hope to create a "base level" upon which future research and development can grow. Polarization optics in telecommunications is an ever evolving? eld. Each year significant advancements are made, punctuated by important discoveries. The references upon which this book is based are only a snapshot in time. Areas that remain unresolved at the time of publication may very well clarified in the years to come. Moreover, the focus of the field changes in time: for instance, there have been few passive nonreciprocal component advancements reported in the last few years, but PMD and PDL advancement continues with only modest abatement.


Table of Contents

1 Vectorial Propagation of Lightp. 1
1.1 Maxwell's Equations and Free-Space Solutionsp. 2
1.2 The Vector and Scalar Potentialsp. 8
1.3 Time-Harmonic Solutionsp. 10
1.4 Classical Description of Polarizationp. 12
1.4.1 Stokes Vectors, Jones and Muller Matricesp. 17
1.4.2 The Poincaré Spherep. 20
1.5 Partial Polarizationp. 22
1.5.1 Coherently Polarized Wavesp. 24
1.5.2 Incoherently Depolarized Wavesp. 28
1.5.3 Pseudo-Depolarized Wavesp. 31
1.5.4 A Heterogeneous Ray Bundlep. 33
Referencesp. 36
2 The Spin-Vector Calculus of Polarizationp. 37
2.1 Motivationp. 37
2.2 Vectors, Length, and Directionp. 39
2.2.1 Bra and Ket Vectorsp. 39
2.2.2 Length and Inner Productsp. 41
2.2.3 Projectors and Outer Productsp. 42
2.2.4 Orthonormal Basisp. 43
2.3 General Vector Transformationsp. 44
2.3.1 Operator Relationsp. 44
2.4 Eigenstates, Hermitian and Unitary Operatorsp. 46
2.4.1 Hermitian Operatorsp. 47
2.4.2 Unitary Operatorsp. 48
2.4.3 Connection between Hermitian and Unitary Matricesp. 49
2.4.4 Similarity Transformsp. 49
2.4.5 Construction of General Unitary Matrixp. 50
2.4.6 Group Properties of SU(2)p. 51
2.5 Vectors Cast in Jones and Stokes Spacesp. 52
2.5.1 Complete Measurement of the Polarization Ellipsep. 52
2.5.2 Pauli Spin Matricesp. 54
2.5.3 The Pauli Spin Vectorp. 55
2.5.4 Spin-Vector Identitiesp. 56
2.5.5 Conservation of Lengthp. 58
2.5.6 Orthogonal Polarization Statesp. 59
2.5.7 Non-Orthogonal Polarization Statesp. 60
2.5.8 Pauli Spin Operatorsp. 61
2.6 Equivalent Unitary Transformationsp. 63
2.6.1 Group Properties of SU(2) and O(3)p. 65
2.6.2 Matrix Entries of R in a Fixed Coordinate Systemp. 66
2.6.3 Vector Expression of R in a Local Coordinate Systemp. 67
2.6.4 Select Vector Identitiesp. 70
2.6.5 Euler Rotationsp. 71
2.6.6 Some Relevant Transformation Applicationsp. 72
Referencesp. 78
3 Interaction of Light and Dielectric Mediap. 79
3.1 Introduction of Media Terms into Maxwell's Equationsp. 80
3.2 Constitutive Relation Tensorsp. 85
3.3 The kDB Systemp. 87
3.4 The Lorentz Forcep. 90
3.5 Isotropic Materialsp. 90
3.5.1 Permittivity of Isotropic Materialsp. 91
3.5.2 Propagation in Isotropic Materialsp. 94
3.5.3 Refraction at an Interfacep. 96
3.5.4 Reflection and Transmission for TE Wavesp. 96
3.5.5 Reflection and Transmission for TM Wavesp. 99
3.5.6 Total Internal Reflectionp. 101
3.6 Birefringent Materialsp. 105
3.6.1 Propagation in Uniaxial Materialsp. 106
3.6.2 Refraction at an Interfacep. 112
3.6.3 Total Internal Reflectionp. 117
3.6.4 Polarization Transformationp. 120
3.7 Gyrotropic Materialsp. 122
3.7.1 Magnetic Material Classesp. 123
3.7.2 Permittivity of Diamagnetic Materialsp. 124
3.7.3 Propagation in Gyrotropic Materialsp. 126
3.7.4 Faraday Rotationp. 129
3.7.5 The Verdet Constantp. 132
3.7.6 Faraday Rotation in Ferrous Materialsp. 133
3.8 Optically Active Materialsp. 135
3.8.1 Propagation in Bi-Isotropic Mediap. 138
Referencesp. 142
4 Elements and Basic Combinationsp. 143
4.1 Wavelength-Division Multiplexed Frequency Gridp. 143
4.2 Properties of Select Materialsp. 146
4.2.1 Isotropic Glass Materialsp. 146
4.2.2 Birefringent Crystalsp. 147
4.2.3 Iron Garnetsp. 150
4.2.4 Packaging Alloysp. 153
4.3 Fabry-Perot and Gires-Tournois Interferometersp. 154
4.3.1 Fabry-Perot Responsep. 157
4.3.2 Gires-Tournois Responsep. 161
4.4 Temperature Dependence of Select Birefringent Crystalsp. 163
4.4.1 Experimental Setupp. 163
4.4.2 Quadratic Temperature-Dependence Modelp. 166
4.4.3 Association of Resonant Peak Shift With Temperature Coefficientsp. 167
4.4.4 Group Index and Thermal-Optic Coefficientsp. 168
4.4.5 Passive Temperature Compensationp. 170
4.5 Compound Crystals For Off-Axis Delayp. 173
4.6 Polarization Retardersp. 178
4.6.1 Half-Wave and Quarter-Wave Waveplatesp. 179
4.6.2 Birefringent Waveplate Technologiesp. 182
4.6.3 Waveplate Combinationsp. 184
4.6.4 Elementary Polarization Controlp. 191
4.6.5 TIR Polarization Retardersp. 196
4.7 Single and Compound Prismsp. 198
4.7.1 Wollaston and Rochon Prismsp. 199
4.7.2 Kaifa Prismp. 202
4.7.3 Shirasaki Prismp. 204
Referencesp. 208
5 Collimator Technologiesp. 211
5.1 Collimator Assembliesp. 213
5.2 Gaussian Opticsp. 219
5.2.1 q Transformation and ABCD Matricesp. 224
5.2.2 ABCD Ray Tracingp. 227
5.2.3 Action of a Single Lensp. 228
5.2.4 Action of a GRIN Lensp. 230
5.2.5 Some Limitations of the ABCD Matrixp. 232
5.3 Select Collimators Analyzed with the ABCD Matrixp. 234
5.4 Fiber-to-Fiber Coupling by a Lens Pairp. 239
5.4.1 Coupling Coefficientsp. 242
Referencesp. 245
6 Isolatorsp. 247
6.1 Polarizing Isolatorp. 247
6.2 Comparison of Lens Systemsp. 252
6.3 Deflection-Type Isolatorsp. 254
6.4 Displacement-Type Isolatorsp. 259
6.5 Two-Stage Isolatorsp. 263
6.6 PMD-Compensated Isolatorsp. 266
Referencesp. 271
7 Circulatorsp. 273
7.1 Polarizing Circulatorp. 274
7.2 Historical Developmentp. 277
7.3 Displacement Circulatorsp. 279
7.4 Deflection Circulatorsp. 284
7.5 Summaryp. 294
Referencesp. 295
8 Properties of PDL and PMDp. 297
8.1 Polarization-Dependent Lossp. 298
8.1.1 Definitionsp. 299
8.1.2 Change of Polarization Statep. 304
8.1.3 Repolarizationp. 306
8.1.4 PDL Evolution Equationsp. 308
8.2 Polarization-Mode Dispersionp. 312
8.2.1 A PMD Primerp. 313
8.2.2 Fundamental Derivationsp. 327
8.2.3 Connection Between Jones and Stokes Spacep. 330
8.2.4 Concatenation Rules for PMDp. 333
8.2.5 PMD Evolution Equationsp. 338
8.2.6 Time-Domain Representationp. 342
8.2.7 Fourier Analysis of the DGD Spectrump. 364
8.3 Combined Effects of PMD and PDLp. 371
8.3.1 Frequency-Dependence of the Polarization Statep. 372
8.3.2 Non-Orthogonality of PSP'sp. 374
8.3.3 PMD and PDL Evolution Equationsp. 376
8.3.4 Separation of PMD and PDLp. 378
Referencesp. 381
9 Statistical Properties of Polarization in Fiberp. 385
9.1 Polarization Evolution Modelp. 388
9.1.1 Random Birefringent Orientationp. 389
9.1.2 Random Component Birefringencep. 391
9.2 Polarization Diffusionp. 392
9.3 RMS Differential-Group Delay Evolutionp. 397
9.4 PMD Statisticsp. 399
9.4.1 Probability Densitiesp. 401
9.4.2 Autocorrelation Functionsp. 408
9.4.3 Mean-DGD Measurement Uncertaintyp. 414
9.4.4 Discrete Waveplate Modelp. 417
9.4.5 Karhunen-Loève Expansion of Brownian Motionp. 419
9.5 PDL Statisticsp. 422
Referencesp. 425
10 Review of Polarization Test and Measurementp. 429
10.1 SOP Measurementp. 430
10.2 PDL Measurementp. 432
10.3 PMD Measurementp. 436
10.3.1 Mean DGD Measurementp. 438
10.3.2 PMD Vector Measurementp. 440
10.3.3 Polarization OTDRp. 450
10.4 Programmable PMD Sourcesp. 451
10.4.1 Sources of DGD and Depolarizationp. 454
10.4.2 ECHO Sourcesp. 463
10.5 Receiver Performance Validationp. 478
Referencesp. 483
A Addition of Multiple Coherent Wavesp. 491
B Select Magnetic Field Profilesp. 493
Referencesp. 496
C Efficient Calculation of PMD Spectrap. 497
D Multidimensional Gaussian Deviatesp. 505
Indexp. 509
Go to:Top of Page