Skip to:Content
|
Bottom
Cover image for Computational electrodynamics : the finite-difference time-domain method
Title:
Computational electrodynamics : the finite-difference time-domain method
Personal Author:
Series:
Artech House antennas and propagation library
Edition:
3rd ed.
Publication Information:
Boston : Artech House, 2005
ISBN:
9781580538329
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004985127 QC760 T34 2005 Open Access Book Book
Searching...
Searching...
30000010150324 QC760 T34 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

This extensively revised and expanded third edition of the Artech House bestseller, Computational Electrodynamics: The Finite-Difference Time-Domain Method, offers engineers the most up-to-date and definitive resource on this critical method for solving Maxwell's equations. The method helps practitioners design antennas, wireless communications devices, high-speed digital and microwave circuits, and integrated optical devices with unsurpassed efficiency. There has been considerable advancement in FDTD computational technology over the past few years, and the third edition brings professionals the very latest details with entirely new chapters on important techniques, major updates on key topics, and new discussions on emerging areas such as nanophotonics. What's more, to supplement the third edition, the authors have created a Web site with solutions to problems, downloadable graphics and videos, and updates,


Author Notes

Allen Taflove is a professor of electrical and computer engineering at Northwestern University, Evanston, IL. He is also the author of Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House 1995).

050


Table of Contents

Stephen D. Gedney and Allen TafloveStephen D. Gedney and Faiza LansingThomas G. Jurgens and Jeffrey G. Blaschak and Gregory W. SaewertJames G. Maloney and Morris P. KeslerJames G. Maloney and Glenn S. Smith and Eric T. Thiele and Om P. GandhiMelinda Piket-May and Bijan Houshmand and Tatsuo Itoh
Preface to the Second Editionp. xvii
Preface to the First Editionp. xxi
1 Electrodynamics Entering the 21st Centuryp. 1
1.1 Introductionp. 1
1.2 The Heritage of Military Defense Applicationsp. 2
1.3 Frequency-Domain Solution Techniquesp. 3
1.4 Rise of Finite-Difference Time-Domain Methodsp. 3
1.5 History of FDTD Techniques for Maxwell's Equationsp. 5
1.6 Characteristics of FDTD and Related Space-Grid Time-Domain Techniquesp. 7
1.6.1 Classes of Algorithmsp. 7
1.6.2 Predictive Dynamic Rangep. 17
1.6.3 Scaling to Very Large Problem Sizesp. 18
1.7 Examples of Applications (including Color Plate Section, pages 9-16)p. 19
1.7.1 Radar-Guided Missilep. 20
1.7.2 High-Speed Computer Circuit-Board Modulep. 21
1.7.3 Power-Distribution System for a High-Speed Computer Multichip Modulep. 22
1.7.4 Microwave Amplifierp. 23
1.7.5 Cellular Telephonep. 24
1.7.6 Optical Microdisk Resonatorp. 25
1.7.7 Photonic Bandgap Microcavity Laserp. 27
1.7.8 Colliding Spatial Solitonsp. 28
1.8 Conclusionsp. 29
Referencesp. 30
2 The One-Dimensional Scalar Wave Equationp. 35
2.1 Introductionp. 35
2.2 Propagating-Wave Solutionsp. 35
2.3 Dispersion Relationp. 36
2.4 Finite Differencesp. 38
2.5 Finite-Difference Approximation of the Scalar Wave Equationp. 39
2.6 Numerical Dispersion Relationp. 42
2.6.1 Case 1: Very Fine Sampling in Time and Space ([Delta]t [right arrow] 0, [Delta]x [right arrow] 0)p. 43
2.6.2 Case 2: Magic Time-Step (c[Delta]t = [Delta]x)p. 43
2.6.3 Case 3: Dispersive Wave Propagationp. 44
2.6.4 Example of Calculation of Numerical Phase Velocity and Attenuationp. 49
2.6.5 Examples of Calculations of Pulse Propagationp. 51
2.7 Numerical Stabilityp. 55
2.7.1 Complex-Frequency Analysisp. 55
2.7.2 Examples of Calculations Involving Numerical Instabilityp. 59
2.8 Summaryp. 61
Appendix 2A Order of Accuracyp. 63
2A.1 Lax-Richtmyer Equivalence Theoremp. 63
2A.2 Limitationsp. 64
Referencesp. 64
Bibliography on Stability of Finite-Difference Methodsp. 65
Problemsp. 65
3 Introduction to Maxwell's Equations and the Yee Algorithmp. 67
3.1 Introductionp. 67
3.2 Maxwell's Equations in Three Dimensionsp. 67
3.3 Reduction to Two Dimensionsp. 70
3.3.1 TM[subscript z] Modep. 71
3.3.2 TE[subscript z] Modep. 71
3.4 Reduction to One Dimensionp. 72
3.4.1 x-Directed, z-Polarized TEM Modep. 72
3.4.2 x-Directed, y-Polarized TEM Modep. 73
3.5 Equivalence to the Wave Equation in One Dimensionp. 74
3.6 The Yee Algorithmp. 75
3.6.1 Basic Ideasp. 75
3.6.2 Finite Differences and Notationp. 77
3.6.3 Finite-Difference Expressions for Maxwell's Equations in Three Dimensionsp. 80
3.6.4 Space Region With a Continuous Variation of Material Propertiesp. 85
3.6.5 Space Region With a Finite Number of Distinct Mediap. 87
3.6.6 Space Region With Nonpermeable Mediap. 89
3.6.7 Reduction to the Two-Dimensional TM[subscript z] and TE[subscript z] Modesp. 91
3.6.8 Interpretation as Faraday's and Ampere's Laws in Integral Formp. 93
3.6.9 Divergence-Free Naturep. 96
3.7 Alternative Finite-Difference Gridsp. 98
3.7.1 Cartesian Gridsp. 99
3.7.2 Hexagonal Girdsp. 101
3.7.3 Tetradecahedron/Dual-Tetrahedron Mesh in Three Dimensionsp. 104
3.8 Summaryp. 105
Referencesp. 106
Problemsp. 106
4 Numerical Dispersion and Stabilityp. 109
4.1 Introductionp. 109
4.2 Derivation of the Numerical Dispersion Relation for Two-Dimensional Wave Propagationp. 110
4.3 Extension to Three Dimensionsp. 112
4.4 Comparison With the Ideal Dispersion Casep. 113
4.5 Anisotropy of the Numerical Phase Velocityp. 114
4.5.1 Sample Values of Numerical Phase Velocityp. 114
4.5.2 Intrinsic Grid Velocity Anisotropyp. 120
4.6 Complex-Valued Numerical Wavenumbersp. 124
4.6.1 Case 1: Numerical Wave Propagation Along the Principal Lattice Axesp. 124
4.6.2 Case 2: Numerical Wave Propagation Along a Grid Diagonalp. 127
4.6.3 Example of Calculation of Numerical Phase Velocity and Attenuationp. 129
4.6.4 Example of Calculation of Wave Propagationp. 131
4.7 Numerical Stabilityp. 133
4.7.1 Complex-Frequency Analysisp. 133
4.7.2 Example of a Numerically Unstable Two-Dimensional FDTD Modelp. 139
4.8 Generalized Stability Problemp. 141
4.8.1 Boundary Conditionsp. 141
4.8.2 Variable and Unstructured Meshingp. 142
4.8.3 Lossy, Dispersive, Nonlinear, and Gain Materialsp. 142
4.9 Modified Yee-Based Algorithms for Improved Numerical Dispersionp. 142
4.9.1 Strategy 1: Center a Specific Numerical Phase-Velocity Curve About cp. 143
4.9.2 Strategy 2: Use Fourth-Order-Accurate Spatial Differencesp. 143
4.9.3 Strategy 3: Use Hexagonal Gridsp. 152
4.9.4 Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivativesp. 156
4.10 Alternating-Direction-Implicit Time-Stepping Algorithm for Operation Beyond the Courant Limitp. 160
4.10.1 Numerical Formulation of the Zheng/Chen/Zhang Algorithmp. 162
4.10.2 Numerical Stabilityp. 169
4.10.3 Numerical Dispersionp. 171
4.10.4 Discussionp. 171
4.11 Summaryp. 172
Referencesp. 172
Problemsp. 173
Projectsp. 174
5 Incident Wave Source Conditionsp. 175
5.1 Introductionp. 175
5.2 Pointwise E and H Hard Sources in One Dimensionp. 176
5.3 Pointwise E and H Hard Sources in Two Dimensionsp. 178
5.3.1 Green's Function for the Scalar Wave Equation in Two Dimensionsp. 178
5.3.2 Obtaining Comparative FDTD Datap. 179
5.3.3 Results for Effective Action Radius of a Hard-Sourced Field Componentp. 180
5.4 J and M Current Sources in Three Dimensionsp. 182
5.4.1 Sources and Chargingp. 183
5.4.2 Sinusoidal Sourcesp. 184
5.4.3 Transient (Pulse) Sourcesp. 185
5.4.4 Intrinsic Lattice Capacitancep. 189
5.4.5 Intrinsic Lattice Inductancep. 190
5.4.6 Impact Upon FDTD Simulations of Lumped-Element Capacitors and Inductorsp. 191
5.5 The Plane-Wave Source Conditionp. 193
5.6 The Total-Field/Scattered-Field Technique: Ideas and One-Dimensional Formulationp. 194
5.6.1 Ideasp. 194
5.6.2 One-Dimensional Formulationp. 197
5.7 Two-Dimensional Formulation of the TF/SF Techniquep. 201
5.7.1 Consistency Conditionsp. 203
5.7.2 Calculation of the Incident Fieldp. 207
5.7.3 Illustrative Examplep. 212
5.8 Three-Dimensional Formulation of the TF/SF Techniquep. 212
5.8.1 Consistency Conditionsp. 216
5.8.2 Calculation of the Incident Fieldp. 221
5.9 Pure Scattered-Field Formulationp. 224
5.9.1 Application to PEC Structuresp. 224
5.9.2 Application to Lossy Dielectric Structuresp. 225
5.9.3 Choice of Incident Plane-Wave Formulationp. 227
5.10 Waveguide Source Conditionsp. 227
5.10.1 Pulsed Electric Field Modal Hard Sourcep. 228
5.10.2 Total-Field/Reflected-Field Modal Formulationp. 229
5.10.3 Resistive Source and Load Conditionsp. 230
5.11 Summaryp. 231
Referencesp. 232
Problemsp. 232
Projectsp. 232
6 Analytical Absorbing Boundary Conditionsp. 235
6.1 Introductionp. 235
6.2 Bayliss-Turkel Radiation Operatorsp. 237
6.2.1 Spherical Coordinatesp. 238
6.2.2 Cylindrical Coordinatesp. 241
6.3 Engquist-Majda One-Way Wave Equationsp. 244
6.3.1 One-Term and Two-Term Taylor Series Approximationsp. 245
6.3.2 Mur Finite-Difference Schemep. 248
6.3.3 Trefethen-Halpern Generalized and Higher Order ABCsp. 251
6.3.4 Theoretical Reflection Coefficient Analysisp. 253
6.3.5 Numerical Experimentsp. 256
6.4 Higdon Radiation Operatorsp. 261
6.4.1 Formulationp. 261
6.4.2 First Two Higdon Operatorsp. 263
6.4.3 Discussionp. 264
6.5 Liao Extrapolation in Space and Timep. 265
6.5.1 Formulationp. 265
6.5.2 Discussionp. 267
6.6 Ramahi Complementary Operatorsp. 269
6.6.1 Basic Ideap. 269
6.6.2 Complementary Operatorsp. 270
6.6.3 Effect of Multiple Wave Reflectionsp. 271
6.6.4 Basis of the Concurrent Complementary Operator Methodp. 273
6.6.5 Illustrative FDTD Modeling Results Obtained Using the C-COMp. 278
6.7 Summaryp. 281
Referencesp. 281
Problemsp. 282
7 Perfectly Matched Layer Absorbing Boundary Conditionsp. 285
7.1 Introductionp. 285
7.2 Plane Wave Incident Upon a Lossy Half-Spacep. 286
7.3 Plane Wave Incident Upon Berenger's PML Mediump. 288
7.3.1 Two-Dimensional TE[subscript z] Casep. 289
7.3.2 Two-Dimensional TM[subscript z] Casep. 293
7.3.3 Three-Dimensional Casep. 294
7.4 Stretched-Coordinate Formulation of Berenger's PMLp. 295
7.5 An Anisotropic PML Absorbing Mediump. 298
7.5.1 Perfectly Matched Uniaxial Mediump. 298
7.5.2 Relationship to Berenger's Split-Field PMLp. 301
7.5.3 A Generalized Three-Dimensional Formulationp. 302
7.5.4 Inhomogeneous Mediap. 304
7.6 Theoretical Performance of the PMLp. 305
7.6.1 The Continuous Spacep. 305
7.6.2 The Discrete Spacep. 305
7.7 Efficient Implementation of UPML in FDTDp. 308
7.7.1 Derivation of the Finite-Difference Expressionsp. 308
7.7.2 Computer Implementation of the UPMLp. 311
7.8 Numerical Experiments With Berenger's Split-Field PMLp. 314
7.8.1 Outgoing Cylindrical Wave in a Two-Dimensional Open-Region Gridp. 314
7.8.2 Outgoing Spherical Wave in a Three-Dimensional Open-Region Latticep. 316
7.8.3 Dispersive Wave Propagation in Metal Waveguidesp. 318
7.8.4 Dispersive and Multimode Wave Propagation in Dielectric Waveguidesp. 320
7.9 Numerical Experiments With UPMLp. 322
7.9.1 Current Source Radiating in an Unbounded Two-Dimensional Regionp. 322
7.9.2 Highly Elongated Domainsp. 327
7.9.3 Microstrip Transmission Linep. 330
7.10 UPML Termination for Conductive Mediap. 332
7.10.1 Theoryp. 332
7.10.2 Numerical Example: Termination of a Conductive Half-Space Mediump. 335
7.11 UPML Termination for Dispersive Mediap. 338
7.11.1 Theoryp. 338
7.11.2 Numerical Example: Reflection by a Lorentz Mediump. 343
7.12 Summary and Conclusionsp. 343
Referencesp. 345
Projectsp. 347
8 Near-to-Far-Field Transformationp. 349
8.1 Introductionp. 349
8.2 Two-Dimensional Transformation, Phasor Domainp. 350
8.2.1 Application of Green's Theoremp. 351
8.2.2 Far-Field Limitp. 352
8.2.3 Reduction to Standard Formp. 354
8.3 Obtaining Phasor Quantities Via Discrete Fourier Transformationp. 356
8.4 Surface Equivalence Theoremp. 359
8.5 Extension to Three Dimensions, Phasor Domainp. 361
8.6 Time-Domain Near-to-Far-Field Transformationp. 366
8.7 Summaryp. 371
Referencesp. 372
Projectp. 372
9 Dispersive and Nonlinear Materialsp. 373
9.1 Introductionp. 373
9.2 Types of Dispersions Consideredp. 374
9.2.1 Debye Mediap. 374
9.2.2 Lorentz Mediap. 375
9.3 Piecewise-Linear Recursive Convolution Method, Linear Material Casep. 375
9.3.1 General Formulation of the Methodp. 375
9.3.2 Application to Debye Mediap. 378
9.3.3 Application to Lorentz Mediap. 379
9.3.4 Numerical Resultsp. 380
9.4 Piecewise-Linear Recursive Convolution Method, Nonlinear Dispersive Material Casep. 382
9.4.1 Governing Equationsp. 382
9.4.2 General Formulation of the Methodp. 384
9.4.3 FDTD Realization in One Dimensionp. 386
9.4.4 Numerical Resultsp. 388
9.5 Auxiliary Differential Equation Method, Linear Material Casep. 392
9.5.1 Formulation for Multiple Debye Polesp. 392
9.5.2 Formulation for Multiple Lorentz Pole Pairsp. 394
9.5.3 Numerical Resultsp. 397
9.6 Auxiliary Differential Equation Method, Nonlinear Dispersive Material Casep. 398
9.6.1 Formulation for Multiple Lorentz Pole Pairs, TM[subscript Z] Casep. 398
9.6.2 Numerical Results for Temporal Solitonsp. 401
9.6.3 Numerical Results for Spatial Solitonsp. 404
9.7 Summary and Conclusionsp. 407
Referencesp. 408
Problemsp. 409
Projectsp. 410
10 Local Subcell Models of Fine Geometrical Featuresp. 411
10.1 Introductionp. 411
10.2 Basis of Contour-Path FDTD Modelingp. 412
10.3 The Simplest Contour-Path Subcell Modelsp. 413
10.3.1 Diagonal Split-Cell Model for PEC Surfacesp. 413
10.3.2 Average Properties Model for Material Surfacesp. 415
10.4 The Contour-Path Model of the Narrow Slotp. 416
10.5 The Contour-Path Model of the Thin Wirep. 420
10.6 Locally Conformal Models of Curved Surfacesp. 424
10.6.1 Dey-Mittra Technique for PEC Structuresp. 424
10.6.2 Illustrative Results for PEC Structuresp. 427
10.6.3 Dey-Mittra Technique for Material Structuresp. 433
10.7 Maloney-Smith Technique for Thin Material Sheetsp. 434
10.7.1 Basisp. 434
10.7.2 Illustrative Resultsp. 438
10.8 Dispersive Surface Impedancep. 442
10.8.1 Maloney-Smith Methodp. 442
10.8.2 Beggs Methodp. 449
10.8.3 Lee Methodp. 457
10.9 Relativistic Motion of PEC Boundariesp. 461
10.9.1 Basisp. 461
10.9.2 Illustrative Resultsp. 465
10.10 Summary and Discussionp. 468
Referencesp. 470
Bibliographyp. 471
Projectsp. 472
11 Nonorthogonal and Unstructured Gridsp. 473
11.1 Introductionp. 473
11.2 Nonuniform Orthogonal Gridsp. 474
11.3 Locally Conformal Grids, Globally Orthogonalp. 482
11.4 Global Curvilinear Coordinatesp. 484
11.4.1 Nonorthogonal Curvilinear FDTD Algorithmp. 484
11.4.2 Stability Criterionp. 490
11.5 Irregular Nonorthogonal Structured Gridsp. 493
11.6 Irregular Nonorthogonal Unstructured Gridsp. 500
11.6.1 Generalized Yee Algorithmp. 500
11.6.2 Inhomogeneous Mediap. 506
11.6.3 Practical Implementation of the Generalized Yee Algorithmp. 508
11.7 A Planar Generalized Yee Algorithmp. 509
11.7.1 Time-Stepping Expressionsp. 510
11.7.2 Projection Operatorsp. 511
11.7.3 Efficient Time-Stepping Implementationp. 513
11.8 Examples of Passive-Circuit Modeling Using the Planar Generalized Yee Algorithmp. 514
11.8.1 32-GHz Wilkinson Power Dividerp. 514
11.8.2 32-GHz Gysel Power Dividerp. 517
11.8.3 Signal Lines in an IBM Thermal Conduction Modulep. 518
11.9 Summary and Conclusionsp. 522
Referencesp. 523
Problemsp. 525
Projectsp. 527
12 Bodies of Revolutionp. 529
12.1 Introductionp. 529
12.2 Field Expansionp. 530
12.3 Difference Equations for Off-Axis Cellsp. 530
12.3.1 Ampere's Law Contour Path Integral to Calculate e[subscript r]p. 532
12.3.2 Ampere's Law Contour Path Integral to Calculate e[subscript phi]p. 534
12.3.3 Ampere's Law Contour Path Integral to Calculate e[subscript z]p. 536
12.3.4 Difference Equationsp. 539
12.3.5 Surface-Conforming Contour Path Integralsp. 542
12.4 Difference Equations for On-Axis Cellsp. 544
12.4.1 Ampere's Law Contour Path Integral to Calculate e[subscript z] on the z-Axisp. 544
12.4.2 Ampere's Law Contour Path Integral to Calculate e[subscript phi] on the z-Axisp. 546
12.4.3 Faraday's Law Calculation of h[subscript r] on the z-Axisp. 548
12.5 Numerical Stabilityp. 549
12.6 PML Absorbing Boundary Conditionp. 549
12.6.1 BOR-FDTD Backgroundp. 549
12.6.2 Extension of PML to the General BOR Casep. 552
12.6.3 Examplesp. 558
12.7 Application to Particle Accelerator Physicsp. 560
12.7.1 Definitions and Conceptsp. 560
12.7.2 Examplesp. 563
12.8 Summaryp. 566
Referencesp. 566
Problemsp. 567
Projectsp. 568
13 Analysis of Periodic Structuresp. 569
13.1 Introductionp. 569
13.2 Review of Scattering From Periodic Structuresp. 572
13.3 Direct Field Methodsp. 575
13.3.1 Normal Incidence Casep. 575
13.3.2 Multiple Unit Cells for Oblique Incidencep. 577
13.3.3 Sine-Cosine Methodp. 579
13.3.4 Angled-Update Methodp. 580
13.4 Introduction to the Field-Transformation Techniquep. 584
13.5 Multiple-Grid Approachp. 589
13.5.1 Formulationp. 589
13.5.2 Numerical Stability Analysisp. 591
13.5.3 Numerical Dispersion Analysisp. 592
13.5.4 Lossy Materialsp. 593
13.5.5 Lossy Screen Examplep. 595
13.6 Split-Field Method, Two Dimensionsp. 596
13.6.1 Formulationp. 596
13.6.2 Numerical Stability Analysisp. 598
13.6.3 Numerical Dispersion Analysisp. 600
13.6.4 Lossy Materialsp. 601
13.6.5 Lossy Screen Examplep. 602
13.7 Split-Field Method, Three Dimensionsp. 603
13.7.1 Formulationp. 603
13.7.2 Numerical Stability Analysisp. 607
13.7.3 UPML Absorbing Boundary Conditionp. 610
13.8 Application of the Periodic FDTD Methodp. 614
13.8.1 Photonic Bandgap Structuresp. 614
13.8.2 Frequency-Selective Surfacesp. 616
13.8.3 Antenna Arraysp. 618
13.9 Summary and Conclusionsp. 623
Acknowledgmentsp. 623
Referencesp. 623
Projectsp. 625
14 Modeling of Antennasp. 627
14.1 Introductionp. 627
14.2 Formulation of the Antenna Problemp. 628
14.2.1 Transmitting Antennap. 628
14.2.2 Receiving Antennap. 630
14.2.3 Symmetryp. 630
14.2.4 Excitationp. 632
14.3 Antenna Feed Modelsp. 634
14.3.1 Detailed Modeling of the Feedp. 634
14.3.2 Simple Gap Feed Model for a Monopole Antennap. 636
14.3.3 Improved Simple Feed Modelp. 639
14.4 Near-to-Far-Field Transformationsp. 644
14.4.1 Use of Symmetryp. 645
14.4.2 Time-Domain Near-to-Far-Field Transformationp. 646
14.4.3 Frequency-Domain Near-Field to Far-Field Transformationp. 648
14.5 Plane-Wave Sourcep. 649
14.5.1 Effect of an Incremental Displacement of the Surface Currentsp. 649
14.5.2 Effect of an Incremental Time Shiftp. 651
14.5.3 Relation to Total-Field/Scattered-Field Lattice Zoningp. 652
14.6 Case Study I: The Standard-Gain Hornp. 653
14.7 Case Study II: The Vivaldi Slotline Arrayp. 659
14.7.1 Backgroundp. 659
14.7.2 The Planar Elementp. 660
14.7.3 The Vivaldi Pairp. 665
14.7.4 The Vivaldi Quadp. 665
14.7.5 The Linear Phased Arrayp. 668
14.7.6 Phased-Array Radiation Characteristics Indicated by the FDTD Modelingp. 669
14.7.7 Active Impedance of the Phased Arrayp. 669
14.8 Near-Field Simulationsp. 675
14.8.1 Generic 900-MHz Cellphone Handset in Free Spacep. 675
14.8.2 900-MHz Dipole Antenna Near a Layered Bone-Brain Half-Spacep. 676
14.8.3 840-MHz Dipole Antenna Near a Rectangular Brain Phantomp. 678
14.8.4 900-MHz Infinitesimal Dipole Antenna Near a Spherical Brain Phantomp. 680
14.8.5 1,900-MHz Half-Wavelength Dipole Near a Spherical Brain Phantomp. 681
14.9 Selected Recent Applicationsp. 682
14.9.1 Use of Photonic-Bandgap Materialsp. 682
14.9.2 Ground-Penetrating Radarp. 682
14.9.3 Antenna-Radome Interactionp. 687
14.9.4 Personal Wireless Communications Devicesp. 690
14.9.5 Biomedical Applications of Antennasp. 696
14.10 Summary and Conclusionsp. 697
Referencesp. 697
Projectsp. 701
15 High-Speed Electronic Circuits With Active and Nonlinear Componentsp. 703
15.1 Introductionp. 703
15.2 Basic Circuit Parametersp. 705
15.2.1 Transmission Line Parametersp. 706
15.2.2 Impedancep. 706
15.2.3 S Parametersp. 707
15.3 Differential Capacitance Calculationp. 708
15.4 Differential Inductance Calculationp. 709
15.5 Lumped Inductance Due to a Discontinuityp. 711
15.5.1 Flux / Current Definitionp. 711
15.5.2 Fitting Z([omega]) or S([omega]) to an Equivalent Circuitp. 712
15.5.3 Discussion: Choice of Methodsp. 712
15.6 Inductance of Complex Power-Distribution Systemsp. 713
15.6.1 Method Descriptionp. 713
15.6.2 Example: Multiplane Meshed Printed-Circuit Boardp. 715
15.6.3 Discussionp. 718
15.7 Parallel Coplanar Microstripsp. 718
15.8 Multilayered Interconnect Modeling Examplep. 720
15.9 Digital Signal Processing and Spectrum Estimationp. 721
15.9.1 Prony's Methodp. 721
15.9.2 Autoregressive Modelsp. 725
15.9.3 Pade Approximationp. 729
15.10 Modeling of Lumped Circuit Elementsp. 734
15.10.1 FDTD Formulation Extended to Circuit Elementsp. 734
15.10.2 The Resistorp. 736
15.10.3 The Resistive Voltage Sourcep. 737
15.10.4 The Capacitorp. 737
15.10.5 The Inductorp. 738
15.10.6 The Diodep. 740
15.10.7 The Bipolar Junction Transistorp. 741
15.11 Direct Linking of FDTD and SPICEp. 743
15.11.1 Basic Ideap. 745
15.11.2 Norton Equivalent Circuit "Looking Into" the FDTD Space Latticep. 745
15.11.3 Thevenin Equivalent Circuit "Looking Into" the FDTD Space Latticep. 748
15.12 Case Study: A 6-GHz MESFET Amplifier Modelp. 750
15.12.1 Large-Signal Modelp. 750
15.12.2 Amplifier Configurationp. 753
15.12.3 Analysis of the Circuit Without the Packaging Structurep. 754
15.12.4 Analysis of the Circuit With the Packaging Structurep. 756
15.13 Summary and Conclusionsp. 759
Acknowledgementsp. 760
Referencesp. 761
Additional Bibliographyp. 763
Projectsp. 764
16 Microcavity Optical Resonatorsp. 767
16.1 Introductionp. 767
16.2 Issues Related to FDTD Modeling of Optical Structuresp. 768
16.2.1 Optical Waveguidesp. 768
16.2.2 Material Dispersion and Nonlinearitiesp. 772
16.3 Macroscopic Modeling of Optical Gain Mediap. 772
16.3.1 Theoryp. 773
16.3.2 Validation Studiesp. 776
16.4 Application to Vertical-Cavity Surface-Emitting Lasersp. 780
16.4.1 Passive Studiesp. 782
16.4.2 Active Studiesp. 784
16.5 Microcavities Based on Photonic Bandgap Structures, Quasi One-Dimensional Casep. 788
16.6 Microcavities Based on Photonic Bandgap Structures, Two-Dimensional Casep. 793
16.7 Microcavity Ring Resonatorsp. 797
16.7.1 FDTD Modeling Considerationsp. 797
16.7.2 Coupling to Straight Waveguidesp. 800
16.7.3 Coupling to Curved Waveguidesp. 802
16.7.4 Elongated Ring Designsp. 804
16.7.5 Resonancesp. 806
16.8 Microcavity Disk Resonatorsp. 810
16.8.1 Resonance Behaviorp. 811
16.8.2 Suppression of Higher Order Radial Whispering-Gallery Modesp. 815
16.8.3 Additional FDTD Modeling Studiesp. 819
16.9 Summary and Conclusionsp. 819
Referencesp. 822
Additional Bibliographyp. 825
Projectsp. 826
Acronymsp. 827
About the Authorsp. 831
Indexp. 839
Go to:Top of Page