Skip to:Content
|
Bottom
Cover image for Petroleum refining : 3conversion processes
Title:
Petroleum refining : 3conversion processes
Publication Information:
Paris, France : Editions Technip, 2001
ISBN:
9782710807797

9782710806868
Added Author:
Added Corporate Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004303131 TP690 P37 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

This five-volume series covers the entire range of technologies used in the petroleum refining industry. The books are intended for students and for the engineers and technicians who operate in refineries.In addition to the detailed description of the conventional separation processes used in refining, this volume devotes ample space to discussing future developments. These include enhancements to existing technologies and the introduction of new technologies and separation processes that are as yet seldom implemented in the industry.Contents: 1. Basics of separation operations. 2. Thermodynamics: phase equilibria. 3. Mass transfer and efficiency of separation operations. 4. Distillation, absorption and stripping. 5. Distillation, absorption and stripping in the petroleum industry. 6. Liquid-liquid extraction. 7. Solvent extraction in the oil industry. 8. Crystallization. 9. Crystallization in the oil industry: solvent dewaxing. 10. Adsorption. 11. Adsorption in the oil and gas industry. 12. Membrane separation. References. Index.


Table of Contents

Forewordp. XIII
Nomenclaturep. XXV
Abbrevations and Acronymsp. XXVII
Chapter 1 Introduction
1.1 Coping with Challenges (1850-1915)p. 1
1.2 Developing Processes (1915-1940)p. 2
1.3 Oil and Growth (1940-1973)p. 4
1.4 Oil and Crisis (1973-1990)p. 5
1.5 The Futurep. 6
1.6 Conclusionsp. 9
Chapter 2 Basic Principles Governing Chemical Changes
2.1 Stoichiometry and Associated Parametersp. 11
2.1.1 The Concept of Advancement (or Molar Extent)p. 13
2.1.2 Conversion, Selectivity, and Yieldp. 14
2.2 Thermodynamics of Chemical Reactionsp. 17
2.2.1 Enthalpy Variation Associated with a Chemical Reactionp. 18
2.2.2 Gibbs Energy Variation Associated with a Chemical Reactionp. 20
2.2.3 Conclusionp. 26
2.3 Chemical Kineticsp. 27
2.3.1 Nature and Location of the Reaction Phasep. 27
2.3.2 Methods of Activating Chemical Reactions. Active Intermediate Formsp. 28
2.3.3 Formal Chemical Kineticsp. 31
2.3.4 Classifying Chemical Reactorsp. 47
2.3.5 General Formulation of Mass and Enthalpy Balancesp. 50
Chapter 3 Industrial Catalysts
3.1 The Place of Catalytic Processes in Refiningp. 59
3.2 Classifying Catalystsp. 63
3.2.1 Active Elements, Promotersp. 63
3.2.2 Main Types of Refining Catalystsp. 67
3.3 Catalyst Characteristics and Propertiesp. 67
3.3.1 Basic Catalyst Characteristicsp. 69
3.3.2 Intrinsic Characteristicsp. 69
3.3.3 Non-Catalytic Characteristicsp. 70
3.3.4 Determining Basic Catalytic Propertiesp. 71
3.3.5 Physicochemical Propertiesp. 74
3.4 Preparing the Catalystp. 82
3.4.1 Methodology. Optimizing the Formulationp. 82
3.4.2 Basis for Preparing Catalysts: Unit Operationsp. 84
3.5 Catalyst Regenerationp. 91
3.5.1 Catalyst Deactivationp. 91
3.5.2 Regeneration Methodsp. 95
3.6 Conclusionp. 97
Chapter 4 Catalytic Reforming
4.1 Importance of the Process in Making Up the "Gasoline Pool"p. 101
4.1.1 Gasolinesp. 101
4.1.2 Motor Fuel Stocksp. 102
4.1.3 The Catalytic Reforming Processp. 104
4.2 Process Backgroundp. 106
4.2.1 Past and Presentp. 106
4.2.2 Futurep. 108
4.3 Data Overviewp. 108
4.3.1 Reactions Involvedp. 108
4.3.2 Reaction Thermodynamicsp. 113
4.3.3 Catalystsp. 117
4.4 Process Datap. 142
4.4.1 Operating Variablesp. 142
4.4.2 Influence of Feedsp. 148
4.5 Technologyp. 148
4.5.1 Fixed Bedp. 148
4.5.2 Moving Bedp. 153
4.6 Industrial Performancep. 157
4.6.1 Processes. Operating Conditionsp. 157
4.6.2 Typical Yieldsp. 157
4.6.3 Reformate Characteristicsp. 159
4.6.4 Run Duration. Lifetimep. 162
4.6.5 Special Runsp. 162
4.7 Economicsp. 163
4.7.1 Catalytic Reforming Capacityp. 163
4.7.2 Process Licensorsp. 164
4.7.3 Investment. Operating Costsp. 164
Chapter 5 Catalytic Cracking
5.1 Historical Overviewp. 169
5.2 The FCC Processp. 170
5.2.1 Introductionp. 170
5.2.2 Feeds and Productsp. 171
5.2.3 Description of the Processp. 172
5.2.4 Thermal Balancep. 181
5.2.5 Fluidization and Pressure Balancep. 184
5.2.6 Operating Variables, Conversion, and Cracking Severityp. 189
5.2.7 Changing Technologyp. 192
5.2.8 Residue Crackingp. 196
5.3 Reactions, Reactivity, and Mechanismsp. 199
5.3.1 Reactionsp. 199
5.3.2 Reactivity of Hydrocarbon Familiesp. 204
5.3.3 Reactivity of Industrial Feedsp. 206
5.4 The Catalystp. 210
5.4.1 Historical Backgroundp. 210
5.4.2 Description of a Modern FCC Catalystp. 211
5.4.3 Design and Selection of an FCC Catalystp. 216
5.5 Economicsp. 223
5.6 Conclusionp. 223
Chapter 6 Isomerization of Light Paraffins
6.1 Isomerization of C[subscript 5]-C[subscript 6] Paraffinsp. 229
6.1.1 Aimp. 229
6.1.2 Thermodynamicsp. 231
6.1.3 The Catalystp. 231
6.1.4 Reaction Mechanismp. 233
6.1.5 Kineticsp. 237
6.1.6 The Isomerization Processp. 237
6.1.7 Economicsp. 247
6.2 Isomerization of n-Butanep. 251
6.2.1 Aimp. 251
6.2.2 Thermodynamicsp. 252
6.2.3 Catalystsp. 252
6.2.4 Reaction Mechanismp. 252
6.2.5 Kineticsp. 253
6.2.6 Processp. 253
Chapter 7 Aliphatic Alkylation
7.1 Role of the Process in Gasoline Productionp. 257
7.2 Reaction Thermodynamicsp. 258
7.3 Alkylate Compositionsp. 259
7.4 Catalystsp. 262
7.5 Reaction Mechanismsp. 262
7.5.1 Alkylate Production Mechanismsp. 263
7.5.2 Red Oil Production Mechanismsp. 264
7.5.3 Structure and Function of Red Oilsp. 265
7.6 Process Datap. 266
7.6.1 Feed Compositionp. 266
7.6.2 Feed Pretreatmentp. 268
7.6.3 Operating Conditionsp. 269
7.6.4 Sulfuric Acid Alkylation Processesp. 272
7.6.5 HF Alkylation Processesp. 281
7.7 Economicsp. 285
7.7.1 Investmentsp. 285
7.7.2 Operating Costsp. 285
7.7.3 Installed Capacityp. 286
7.8 Future Trendsp. 287
7.8.1 Two-Step Processp. 287
7.8.2 Solid Acid Catalystsp. 287
Chapter 8 Olefin Etherification
8.1 Main Ethers Used in Refiningp. 291
8.1.1 Properties of Ethersp. 292
8.1.2 Sources of Feedstocksp. 294
8.1.3 Integrated Etherification Process in a Refinery Schemep. 298
8.2 Basic Datap. 298
8.2.1 Reaction Mechanismp. 298
8.2.2 Reaction Kinetics and Thermodynamicsp. 301
8.2.3 Catalystsp. 301
8.2.4 Side Reactionsp. 302
8.3 Process Datap. 303
8.3.1 Feed Treatmentp. 303
8.3.2 Raffinate Treatmentp. 304
8.3.3 Operating Conditionsp. 304
8.3.4 Process Flow Schemesp. 305
8.3.5 Reactor Designp. 313
8.3.6 Product Yield and Qualityp. 314
8.4 Economicsp. 314
8.4.1 Production Capacityp. 315
8.4.2 Process Licensorsp. 316
8.4.3 Investmentsp. 317
Chapter 9 Oligomerization
9.1 Background Informationp. 321
9.1.1 Acid Catalysisp. 322
9.1.2 Catalysis by Transition Metalsp. 323
9.2 Industrial Processesp. 324
9.2.1 Catpoly Process (UOP)p. 324
9.2.2 Polynaphta Process (IFP)p. 326
9.2.3 Dimersol Process (IFP)p. 328
9.2.4 MOGD Process (Mobil Olefin to Gasoline and Distillate)p. 329
9.3 Economicsp. 331
9.3.1 Process Licensorsp. 331
9.3.2 Investments. Operating Costsp. 331
Chapter 10 Hydrocracking
10.1 Function of the Processp. 334
10.2 Background Informationp. 338
10.2.1 Typical Composition of Hydrocracking Feedsp. 338
10.2.2 Reaction Familiesp. 338
10.2.3 Reaction Thermodynamicsp. 341
10.2.4 Kinetic Datap. 342
10.2.5 Catalystsp. 342
10.2.6 Effects of Feed Impurities and Componentsp. 347
10.3 Process Datap. 348
10.3.1 Typical Flow Schemesp. 348
10.3.2 Operating Conditionsp. 350
10.3.3 Product Yields and Qualityp. 355
10.3.4 Hydrogen Consumptionp. 360
10.4 Economicsp. 362
10.4.1 Hydrocracking Capacityp. 362
10.4.2 Process Licensorsp. 362
10.4.3 Investments and Operating Costsp. 362
Chapter 11 Visbreaking of Residues
11.1 Background Informationp. 365
11.1.1 Feed Compositionp. 365
11.1.2 Cracking Reactionsp. 366
11.1.3 Reaction Kinetics and Mechanismp. 366
11.2 Process Datap. 366
11.2.1 Operating Variablesp. 366
11.2.2 Product Properties and Yieldsp. 368
11.3 Implementing the Visbreaking Processp. 371
11.3.1 Process Flow Schemesp. 371
11.3.2 Specific Equipmentp. 373
11.3.3 Environmentp. 378
11.4 Economicsp. 378
Chapter 12 Coking
12.1 Delayed Cokingp. 381
12.1.1 Feed Typesp. 381
12.1.2 Background Informationp. 382
12.1.3 Productsp. 384
12.1.4 Typical Product Yields and Characteristicsp. 387
12.1.5 Description of the Delayed Coking Processp. 387
12.1.6 Coke Calcinationp. 396
12.1.7 Economic Considerationsp. 397
12.2 Fluid Coking: Flexicokingp. 398
12.2.1 Feed Typesp. 399
12.2.2 Background Informationp. 399
12.2.3 Typical Yieldsp. 400
12.2.4 Process Descriptionp. 400
12.2.5 Uses for Low Btu Gasp. 405
12.2.6 Use of Purge Cokep. 406
12.2.7 Economic Informationp. 406
Chapter 13 Residue Hydroconversion
13.1 Integration in a Refineryp. 411
13.2 General Introduction to Residue Hydroconversion Processesp. 411
13.3 Background Informationp. 413
13.3.1 Chemical Reactionsp. 413
13.3.2 Catalystsp. 418
13.3.3 Kinetics and Operating Conditions: Conversion to Light Fractions, Metals, Sulfur, and Nitrogen Eliminationp. 427
13.4 Technologies and Process Datap. 429
13.4.1 Fixed Bed Processesp. 429
13.4.2 Moving Bed Processesp. 435
13.4.3 Ebullating Bed Processesp. 437
13.4.4 Entrained Bed Processesp. 441
13.4.5 Advantages and Drawbacks of the Four Types of Process. Product Yields and Characteristicsp. 441
13.4.6 Associating the Hydrotreating Process with Deasphalting and Hydrogen Productionp. 444
13.5 Economicsp. 448
Chapter 14 Hydrogen Production
14.1 Hydrogen in the Refineryp. 451
14.1.1 Requirementsp. 451
14.1.2 Sourcesp. 452
14.1.3 Hydrogen Balancep. 453
14.2 Hydrogen Production by Steam Reformingp. 455
14.2.1 Production of Synthesis Gasp. 455
14.2.2 Carbon Monoxide to Hydrogen Conversionp. 465
14.2.3 Carbon Dioxide Removalp. 468
14.2.4 Methanation of Residual CO and CO[subscript 2]p. 473
14.2.5 Purification by Adsorptionp. 473
14.2.6 Comparison of Conventional Methanation and Adsorption (PSA) Methodsp. 475
14.2.7 Ongoing Developmentsp. 477
14.3 Hydrogen Production by Partial Oxidationp. 480
14.3.1 Synthesis Gas Productionp. 480
14.3.2 Hydrogen Production Sequencingp. 486
14.4 Hydrogen and Electricity Coproductionp. 492
14.5 Other Technologiesp. 492
14.5.1 Hytex Processp. 492
14.5.2 Catalytic Autothermal Processp. 495
14.6 Economicsp. 495
14.6.1 Process Licensorsp. 495
14.6.2 Investmentsp. 497
14.6.3 Production Costsp. 498
14.6.4 Cost of Other Sources of Hydrogenp. 500
Chapter 15 White Products Refining by Sweetening
15.1 Mercaptan Distribution in Petroleum Cutsp. 503
15.2 Background Datap. 506
15.2.1 Recapitulation of Process Historyp. 508
15.2.2 Current Technologiesp. 511
15.3 Industrial Processesp. 513
15.3.1 Liquid/Liquid Contact Technologiesp. 513
15.3.2 Fixed Bed Catalyst Processesp. 522
15.4 Economic Datap. 526
15.4.1 General Informationp. 526
15.4.2 Process Licensors. Treatment Capacityp. 528
15.4.3 Basis for an Economic Estimatep. 528
Chapter 16 Hydrotreating
16.1 Objectives of Hydrotreating Processesp. 533
16.2 Impurities and their Originsp. 534
16.2.1 Heteroatoms and Metalsp. 534
16.2.2 Unsaturated Productsp. 537
16.3 Hydrotreating Processesp. 537
16.4 Background Informationp. 538
16.4.1 Hydrotreating Reactionsp. 538
16.4.2 Catalystsp. 546
16.5 Process Informationp. 549
16.5.1 Catalyst Reaction Kineticsp. 549
16.5.2 Operating Variablesp. 551
16.5.3 Implementing Catalystsp. 556
16.6 Process Technologyp. 558
16.6.1 Reactorsp. 558
16.6.2 Process Flow Schemesp. 558
16.6.3 Selecting Construction Materialsp. 563
16.7 Industrial Performancep. 564
16.7.1 Feed Pretreatment for Gasoline Catalytic Reforming Unitsp. 564
16.7.2 Hydrotreating Kerosene and Gas Oilp. 566
16.7.3 Hydrotreating Vacuum Distillatesp. 568
16.8 Economicsp. 569
16.8.1 Investmentsp. 569
16.8.2 Hydrotreating Capacity Worldwidep. 572
16.8.3 Process Licensors and Catalyst Suppliersp. 572
Chapter 17 Acid gas treatment
17.1 Absorption of Acid Gases by a Solventp. 575
17.1.1 The Different Solventsp. 575
17.1.2 Simplified Flow Scheme of a Solvent Washing Unitp. 577
17.1.3 Background Informationp. 579
17.1.4 Technology and Process Datap. 581
17.1.5 Process Performancep. 592
17.1.6 Safety and Environmental Issuesp. 592
17.1.7 Process Licensorsp. 593
17.2 Sulfur Recovery Unitsp. 593
17.2.1 Sulfur Recovery with the Vapor Phase Claus Reactionp. 594
17.2.2 Sulfur Recovery by Oxidationp. 609
17.2.3 Tail Gas Treatment Unitsp. 611
17.2.4 Process Performance Figuresp. 618
17.2.5 Economicsp. 618
Chapter 18 Desulfurization of Stack Gases
18.1 Legislationp. 624
18.2 Principle of Stack Gas Desulfurization Processesp. 625
18.2.1 Choice of Sulfur Oxide Chemical Reactantp. 626
18.2.2 Operating Conditionsp. 626
18.2.3 Regenerative Processes and Throwaway Processesp. 626
18.3 Characteristics of Stack Gas Desulfurization Processesp. 627
18.3.1 Stack Gas/Reactant Contactorp. 627
18.3.2 Heating the Stack Gasesp. 628
18.3.3 Corrosive Nature of the Stack Gasesp. 629
18.4 The Main Processesp. 629
18.4.1 Processes Using Lime or Limestonep. 629
18.4.2 Semiwet Processesp. 631
18.4.3 Dry Processes with Dischargesp. 632
18.4.4 Regenerative Processes with Production of Concentrated SO[subscript 2]p. 633
Chapter 19 Water Treatment
19.1 Source and Type of Water Requiring Purificationp. 639
19.1.1 Waste Water from Refining Processesp. 640
19.1.2 General Refinery Effluentsp. 642
19.2 Purification Treatment Methodp. 644
19.2.1 Segregation of Discharge Streamsp. 644
19.2.2 Characteristic Parameters of Waste Water Treatmentsp. 645
19.2.3 Process Condensate Stripping (Sour Water)p. 649
19.2.4 Oil in Water Separationp. 650
19.2.5 Catalytic Oxidation of Sulfides with Airp. 653
19.2.6 Physicochemical Treatmentp. 653
19.2.7 Aerobic Biological Treatmentp. 655
19.2.8 Tertiary Purification for Very Stringent Discharge Standards. Recyclingp. 663
Indexp. 667
Go to:Top of Page