Skip to:Content
|
Bottom
Cover image for Nanoscale processes on insulating surfaces
Title:
Nanoscale processes on insulating surfaces
Personal Author:
Publication Information:
Singapore, SI. ; Hackensack, NJ : World Scientific, c2009.
Physical Description:
xiv, 186 p. : ill. ; 24 cm.
ISBN:
9789812837622
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010297386 QH212.S33 G57 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

Ionic crystals are among the simplest structures in nature. They can be easily cleaved in air and in vacuum, and the resulting surfaces are atomically flat on areas hundreds of nanometers wide. With the development of scanning probe microscopy, these surfaces have become an ideal "playground" to investigate several phenomena occurring on the nanometer scale. This book focuses on the fundamental studies of atomically resolved imaging, nanopatterning, metal deposition, molecular self-assembling and nanotribological processes occurring on ionic crystal surfaces. Here, a significant variety of structures are created by nanolithography, annealing and irradiation by electrons, ions or photons, and are used to confine metal particles and organic molecules or to improve our basic understanding of friction and wear on the atomic scale. Metal oxides with wide band gap are also discussed. Altogether, the results obtained so far will have an undoubted impact on the future development of nanoelectronics and nanomechanics.


Table of Contents

Prefacep. vii
1 Crystal Structures of Insulating Surfacesp. 1
1.1 Halide Surfacesp. 1
1.1.1 Alkali halide surfacesp. 1
1.1.2 Alkaline earth halide surfacesp. 2
1.2 Oxide Surfacesp. 2
1.2.1 True insulating oxide surfacesp. 3
1.2.2 Mixed conducting oxide surfacesp. 4
2 Preparation Techniques of Insulating Surfacesp. 9
2.1 Ultra High Vacuump. 9
2.2 Preparation of Bulk Insulating Surfacesp. 10
2.2.1 Halide surfacesp. 10
2.2.2 Oxide surfacesp. 11
2.2.3 Nanostructuring of insulating surfacesp. 12
2.3 Deposition of Insulating Films, Metals and Organic Moleculesp. 13
2.3.1 Thin insulating filmsp. 14
2.3.2 Metal adsorbates on insulatorsp. 14
2.3.3 Organic molecules on insulatorsp. 15
3 Scanning Probe Microscopy in Ultra High Vacuump. 17
3.1 Atomic Force Microscopyp. 17
3.1.1 Relevant forces in AFMp. 19
3.1.2 Contact AFMp. 21
3.1.3 Non-contact AFMp. 21
3.1.4 Kelvin probe force microscopyp. 24
3.2 Scanning Tunneling Microscopyp. 24
3.2.1 Scanning tunneling microscopyp. 24
3.2.2 Scanning tunneling spectroscopyp. 26
3.3 Atomistic Modeling of SPMp. 26
4 Scanning Probe Microscopy on Bulk Insulating Surfacesp. 29
4.1 Halide Surfacesp. 29
4.1.1 Alkali halide surfacesp. 29
4.1.2 Alkaline earth halide surfacesp. 32
4.2 Oxide Surfacesp. 34
4.2.1 True insulating oxide surfacesp. 34
4.2.2 Mixed conducting oxide surfacesp. 37
4.3 Modeling AFM on Bulk Insulating Surfacesp. 42
4.3.1 Halide surfacesp. 42
4.3.2 Oxide surfacesp. 44
5 Scanning Probe Microscopy on Thin Insulating Filmsp. 47
5.1 Halide Films on Metalsp. 47
5.1.1 Carpet-like growthp. 47
5.1.2 Restructuring and patterning of vicinal surfacesp. 51
5.1.3 Fractal growth at low temperaturesp. 53
5.2 Halide Films on Semiconductorsp. 55
5.3 Heteroepitaxial Growth of Alkali Halide Filmsp. 58
5.4 Oxide Filmsp. 59
5.5 Modeling AFM on Thin Insulating Filmsp. 63
6 Interaction of Ions, Electrons and Photons with Halide Surfacesp. 65
6.1 Ion Bombardment of Alkali Halidesp. 65
6.2 Electron and Photon Stimulated Desorptionp. 68
6.2.1 Electron stimulated desorptionp. 69
6.2.2 Photon stimulated desorptionp. 70
7 Surface Patterning with Electrons and Photonsp. 77
7.1 Surface Topography Modification by Electronic Excitationsp. 77
7.1.1 Layer-by-layer desorptionp. 77
7.1.2 Coexcitation with visible lightp. 81
7.2 Nanoscale Pits on Alkali Halide Surfacesp. 83
7.2.1 Diffusion equation for F-centersp. 85
8 Surface Patterning with Ionsp. 89
8.1 Ripple Formation by Ion Bombardmentp. 89
8.1.1 Linear continuum theory for ripple formationp. 91
8.1.2 Beyond the continuum theoryp. 93
8.2 A Case Study: Ion Beam Modifications of KBr Surfacesp. 94
9 Metal Deposition on Insulating Surfacesp. 101
9.1 Metals on Halide Surfacesp. 101
9.1.1 Metals on plain halide surfacesp. 102
9.1.2 Metals on nanopatterned halide surfacesp. 105
9.2 Metals on Oxide Surfacesp. 107
9.2.1 Metals on true insulating oxide surfacesp. 107
9.2.2 Metals on mixed conducting oxide surfacesp. 109
9.3 Metals on Thin Insulating Filmsp. 110
9.3.1 Metals on halide filmsp. 111
9.3.2 Metals on oxide filmsp. 111
9.4 Modeling AFM on Metal Clusters on Insulatorsp. 113
10 Organic Molecules on Insulating Surfacesp. 115
10.1 Chemical Structures of Organic Moleculesp. 115
10.1.1 Fullerene moleculesp. 115
10.1.2 Porphyrin moleculesp. 116
10.1.3 Phthalocyanine moleculesp. 116
10.1.4 Perylene moleculesp. 116
10.2 Organic Molecules on Halide Surfacesp. 117
10.2.1 Self-assembly of fullerene moleculesp. 117
10.2.2 Nanospale pits as molecular trapsp. 121
10.2.3 Molecular nanowiresp. 123
10.3 Organic Molecules on Oxide Surfacesp. 125
10.4 Organic Molecules on Thin Insulating Filmsp. 127
10.4.1 Organic molecules on halide filmsp. 127
10.4.2 Organic molecules on oxide filmsp. 128
10.5 Modeling AFM on Organic Molecules on Insulatorsp. 129
11 Scanning Probe Spectroscopy on Insulating Surfacesp. 131
11.1 Force Spectroscopy on Insulating Surfacesp. 131
11.1.1 Alkali halide surfacesp. 131
11.1.2 Alkaline earth halide surfacesp. 135
11.1.3 Oxide surfacesp. 137
11.2 Tunneling Spectroscopy on Thin Insulating Filmsp. 137
11.3 Tunneling Spectroscopy on Metal Clustersp. 138
11.3.1 Alkali halide filmsp. 138
11.3.2 Oxide filmsp. 139
11.4 Tunneling Spectroscopy on Organic Moleculesp. 139
12 Nanotribology on Insulating Surfacesp. 141
12.1 Friction Mechanisms at the Atomic Scalep. 142
12.1.1 The Tomlinson modelp. 142
12.1.2 Superlubricityp. 143
12.1.3 Velocity dependence of atomic frictionp. 144
12.2 Friction on Halide Surfacesp. 144
12.2.1 Friction on bulk halide surfacesp. 144
12.2.2 Friction on halide filmsp. 146
12.3 Nanowear Processes on Insulating Surfacesp. 147
12.3.1 Abrasion wear on alkali halide surfacesp. 147
12.3.2 Nanoindentation processesp. 149
12.4 Modeling Nanotribology on Insulating Surfacesp. 152
13 Nanomanipulation on Insulating Surfacesp. 155
13.1 Nanomanipulation Experiments on Insulating Surfacesp. 155
13.1.1 Manipulation on halide surfacesp. 156
13.1.2 Manipulation on oxide surfacesp. 158
13.2 Modeling Nanomanipulation on Insulating Surfacesp. 159
13.2.1 AFM imaging of surface diffusionp. 159
13.2.2 Nanomanipulation of adatoms and vacanciesp. 160
Bibliographyp. 163
Indexp. 183
Go to:Top of Page