Skip to:Content
|
Bottom
Cover image for Intelligent systems and technologies in rehabilition engineering
Title:
Intelligent systems and technologies in rehabilition engineering
Publication Information:
Boca Raton, FL : CRC Press, 2001
ISBN:
9780849301407

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010124902 RM950 I57 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

Prostheses, assistive systems, and rehabilitation systems are essential to increasing the quality of life for people with disabilities. Research and development over the last decade has resulted in enormous advances toward that goal-none more so than the development of intelligent systems and technologies.

In the first truly comprehensive book addressing intelligent technologies for the disabled, top experts from around the world provide an overview of this dynamic, rapidly evolving field. They present state-of-the-art information on the latest, innovative technologies and their applications in various systems designed to better the lives of the disabled.

From the underlying principles to the design, practical applications, and assessment of results, Intelligent Systems and Technologies in Rehabilitation Engineering offers broad, pragmatic coverage of the field. It incorporates the most recent advances in sensory and limb prostheses, myoelectric control systems, circulatory systems, assistive technologies, and applications of virtual reality.

Rapid progress demands a concerted effort to keep up with the latest developments so they can begin to serve their purpose and improve the lives of the disabled. By incorporating details of the latest and most important advances into one volume, Intelligent Systems and Technologies in Rehabilitation Engineering makes that undertaking essentially effortless.


Table of Contents

Horia-Nicolai TeodorescuWentai Liu and Elliot McGucken and Ralph Cavin and Mark Clements and Kasin Vichienchom and Chris Demarco and Mark Humayun and Eugene de Juan and James Weiland and Robert GreenbergChristian Berger-VachonDaniela Zambarbieri and Micaela Schmid and Gennaro VerniKevin Englehart and Bernard Hudgins and Philip ParkerWarren M. GrillAndrea Tura and Angelo Davalli and Rinaldo Sacchetti and Claudio Lamberti and Claudio BoniventoTadashi Kitamura and Ken 'ichi AsamiHarish Aiyar and J. Thomas MortimerRodica Strungaru and Stefan PopescuMitch Wilkes and Anthony Alford and Todd Pack and Tamara Rogers and Edward Brown, Jr. and Alan Peters, II and Kazuhiko KawamuraShraga Shoval and Iwan Ulrich and Johann BorensteinKenton R. Kaufmann and Steven E. Irby and Jeffrey Basford and David H. Sutherland
Preface
About the Editors
Contributors
Acknowledgments
Disclaimer
Part 1. Introduction
Chapter 1 New technologies in rehabilitation. General trendsp. 3
1. Introductionp. 4
1.1. Generalitiesp. 4
1.2. Techniquesp. 5
1.3. Global challengesp. 6
2. Factors of developmentp. 6
2.1. General factorsp. 6
2.2. The impact of the population age pattern changesp. 8
2.3. Technology and medical-related factorsp. 9
2.4. Other factors favoring the use of new technologies in rehabilitationp. 9
3. On terminology: moving borders between termsp. 10
3.1. Terms: rehabilitation, assistive devices, and prosthesesp. 10
3.2. Levels of "intelligence" in new technologiesp. 12
4. Literature overviewp. 14
4.1. Medical-oriented journal papersp. 14
4.2. Overview of the patent literaturep. 19
5. A brief discussion of patent literaturep. 22
6. Other examples of advanced techniques used in rehabilitationp. 24
7. Conclusionsp. 25
Referencesp. 27
Part 2. Sensorial prostheses
Chapter 2 A retinal prosthesis to benefit the visually impairedp. 31
1. Introductionp. 32
1.1. Clinical research and motivation for a visual prosthesisp. 32
1.2. A retinal prosthesis: engineering solution to biological problemp. 36
2. The Multiple unit artificial retina chip (MARC) prosthesisp. 38
2.1. Clinical and engineering overviewp. 38
2.1.1 Foundational clinical researchp. 38
2.1.2 Engineering overview: feasibility and significance of the MARCp. 42
2.2. Prior art and related researchp. 43
2.3. Evolution of the MARC prosthesisp. 45
3. Current engineering researchp. 46
3.1. Early generation chipp. 46
3.2. Overall system functionality of advanced generationsp. 49
3.2.1 Advantages of the MARC systemp. 50
3.2.2 Advanced generation retina telemetric processing chipsp. 51
3.3. Implantable retinal chipp. 53
3.3.1 Chip functionalityp. 53
3.3.2 Chip operationp. 61
3.3.3 Measurement resultsp. 63
3.3.4 Design enhancementp. 69
3.4. Video camera and processing boardp. 70
3.4.1 Extraocular CMOS camera and video processingp. 70
3.5. MARC RF telemetryp. 72
3.6. Electrode array designp. 78
3.6.1 The electrode arrayp. 78
3.6.2 Current electrode arrayp. 79
3.6.3 Substrate for electrode arrayp. 79
3.6.4 Electrode materials and geometryp. 81
3.6.5 Electrochemical evaluation of stimulating electrode arraysp. 84
3.7. Bonding and packagingp. 84
4. Conclusionsp. 87
Referencesp. 87
Chapter 3 Intelligent techniques in hearing rehabilitationp. 93
1. Introductionp. 94
1.1. Understanding modelsp. 94
1.2. Influence of the pathologyp. 95
2. Auditory systemp. 96
2.1. Voice productionp. 96
2.2. Auditory systemp. 98
2.3. Auditory pathwaysp. 99
2.4. Brain stagep. 100
3. Normal (external) aidsp. 100
3.1. General principlesp. 100
3.2. Normal hearing aidsp. 100
3.3. Bone-integrated vibratorp. 103
3.4. Middle ear aidsp. 104
3.5. Numeric revolutionp. 104
4. Cochlear implantsp. 105
4.1. General principlesp. 105
4.2. Australian Nucleusp. 108
4.3. French Digisonicp. 110
4.4. American Clarionp. 112
4.5. Other systemsp. 114
4.6. Surrounding facilitiesp. 115
4.7. New trends in researchp. 116
5. Future prospectsp. 120
5.1. Simulation of the pathologyp. 120
5.2. Classical simulationsp. 121
5.3. Discussionp. 122
6. Conclusionsp. 123
Referencesp. 124
Part 3. Locomotor prostheses
Chapter 4 Sensory feedback for lower limb prosthesesp. 129
1. Introductionp. 129
2. Theories of movement controlp. 130
2.1. Coordination between posture and movementp. 131
2.2. The internal modelp. 132
3. Natural feedbackp. 133
3.1. Tactile sensationp. 134
3.2. Proprioceptive sensationp. 134
4. Artificial feedbackp. 135
5. Center of pressurep. 136
5.1. Instrumentation for center of pressure (CP) evaluationp. 136
5.1.1 Forceplatesp. 137
5.1.2 Sensorized insolesp. 137
5.1.3 Telemetric acquisition of CPp. 138
5.2. Normal trajectory of CP during walkingp. 139
6. Visual and auditory feedbackp. 142
6.1. Visual feedbackp. 142
6.2. Acoustic biofeedbackp. 142
7. Tactile and proprioceptive biofeedbackp. 143
8. A portable device for tactile stimulationp. 144
8.1. The systemp. 144
8.2. Rehabilitation protocolp. 146
9. Conclusionsp. 148
Referencesp. 149
Chapter 5 Multifunction control of prostheses using the myoelectric signalp. 153
1. Introductionp. 153
1.1. Externally powered prosthesesp. 153
1.2. Clinical impactp. 155
2. Myoelectric controlp. 158
2.1. An overviewp. 158
2.2. Multifunction control researchp. 161
2.1.1 Control based on myoelectric statistical pattern recognition techniques: Temple Universityp. 161
2.2.2 Control based on myoelectric statistical pattern recognition techniques: Swedish researchp. 163
2.2.3 Control based on myoelectric statistical pattern recognition techniques: UCLA researchp. 163
2.2.4 Endpoint controlp. 164
2.2.5 Extended physiological proprioceptionp. 169
2.2.6 Modeling of musculo-skeletal dynamicsp. 170
2.2.7 Statistical features for controlp. 173
2.2.8 Autoregressive modelsp. 176
2.2.9 Equilibrium-point controlp. 179
2.2.10 Pattern recognition-based control using the transient myoelectric signalp. 181
2.3. Significant contributions of previous workp. 186
3. Research directionsp. 188
3.1. Sequential controlp. 188
3.1.1 Signal acquisitionp. 189
3.1.2 Feature extractionp. 190
3.1.3 Classifiersp. 190
3.2. Simultaneous, coordinated controlp. 191
3.2.1 Trajectory generationp. 192
3.2.2 Motion controlp. 195
3.3. Discussionp. 198
Referencesp. 200
Chapter 6 Selective activation of the nervous system for motor system neural prosthesesp. 209
1. Introductionp. 209
2. Fundamental considerations for neural prosthesis electrodesp. 211
3. Approaches to the nervous systemp. 212
3.1. Muscle-based electrodesp. 212
3.2. Nerve-based electrodesp. 214
3.3. Anatomy of peripheral nervesp. 216
3.4. Intraneural electrodesp. 217
3.5. Epineural electrodesp. 218
3.6. Cuff electrodesp. 219
4. Conclusions and future prospects in motor system neural prosthesesp. 230
Referencesp. 231
Chapter 7 Upper limb myoelectric prostheses: sensory control system and automatic tuning of parametersp. 243
1. The sensory control in upper limb prosthesesp. 243
2. A sensory control system for the Otto Bock prosthesisp. 246
2.1. Involuntary feedback in a sensory control systemp. 246
2.2. The microcontroller card for the sensory control systemp. 247
2.3. The FSR sensorsp. 250
2.4. The "intelligent" hand: automatic touchp. 251
2.5. The slipping problem: an optical sensor for motion detectionp. 252
2.6. Tests on the sensory control systemp. 256
2.7. Development of new sensorsp. 260
3. Automatic tuning of prosthesis parametersp. 262
3.1. A fuzzy expert system for tuning parametersp. 262
3.2. Parameters involved in the automatic tuning procedurep. 263
3.3. Examples of rules of the fuzzy expert systemp. 264
3.4. The tele-assistance projectp. 267
4. Conclusionsp. 268
Referencesp. 269
Part 4. Pacemakers and life-sustaining devices
Chapter 8 Computer-aided support technologies for artificial heart control. Diagnosis and hemodynamic measurementsp. 273
1. Introductionp. 274
2. Methodp. 276
2.1. Model reductionp. 276
2.2. Interpretive structural modeling (ISM)p. 278
3. System descriptionp. 280
3.1. Structure of the systemp. 280
3.2. Human modelp. 281
4. Indirect measurement techniquep. 283
4.1. Model identificationp. 283
4.2. Estimation techniquep. 286
5. Results and discussionp. 287
5.1. Diagnostic aidsp. 287
5.2. Analytical and modeling aidsp. 290
5.3. Indirect measurementp. 294
6. Conclusionsp. 297
Referencesp. 298
Chapter 9 Diaphragm pacing for chronic respiratory insufficiencyp. 301
1. Respiratory insufficiencyp. 302
1.1. Spinal cord injuryp. 303
1.2. Central hypoventilation syndromep. 305
2. Respirationp. 306
2.1. Primary musclesp. 308
2.2. Accessory musclesp. 313
2.3. Inspiration and expirationp. 315
3. Diaphragm pacing systemsp. 316
3.1. Prerequisites for diaphragm pacingp. 317
3.2. Nerve electrodesp. 318
3.3. Intramuscular electrodesp. 326
3.4. Epimysial electrodesp. 327
4. Alternatives to diaphragm pacing systemsp. 328
4.1. Mechanical ventilationp. 329
4.2. Pharmacologicp. 332
4.3. Rehabilitativep. 332
4.4. Surgical interventionp. 333
4.5. Magnetic stimulationp. 334
4.6. Electrical stimulation of the intercostal musclesp. 334
5. Conclusions and future directionp. 335
Referencesp. 337
Chapter 10 Intelligent systems in heart pacemakersp. 347
1. Pacemakersp. 347
1.1. Introductionp. 347
1.2. Classification of pacemakersp. 349
1.3. Methods of adaptations to the demands of the body activityp. 353
2. System requirements and design consideration for implementation of intelligent cardiac pacemakersp. 356
2.1. Short introduction to fuzzy logicp. 356
2.2. Hardware and software for fuzzy logic in medical applicationsp. 358
2.2.1 Generalitiesp. 358
2.2.2 A fuzzy microcontrollerp. 359
2.2.3 The fuzzy logic languagep. 360
2.3. Implementing a fuzzy controller for pacemakersp. 360
2.4. Simulation of a fuzzy pacemakerp. 365
2.5. Experimental resultsp. 366
2.6. Conclusionsp. 369
3. Discussionp. 370
Appendix Fu.L.L. program for the heart controllerp. 372
Referencesp. 374
Part 5. Robotic systems and advanced mechanics
Chapter 11 Service robots for rehabilitation and assistancep. 381
1. Introductionp. 381
1.1. Service roboticsp. 382
1.2. Human-machine interfacing and system integrationp. 382
1.3. System integration using agentsp. 383
1.4. Software architecturesp. 384
1.5. Intelligent machine architecture (IMA)p. 385
1.6. Human directed local autonomy (HuDL)p. 385
2. Historical background: software architectures in the IRLp. 388
2.1. The previous architecturep. 388
2.2. Shortcomings of the previous approachp. 389
2.2.1 Motivationsp. 389
2.2.2 Pitfalls of the pastp. 389
2.2.3 The problem of interfacesp. 389
2.2.4 The problem of streamsp. 390
2.2.5 The problem of the blackboardp. 390
2.2.6 Desirable properties of a new architecturep. 391
3. A new architecturep. 392
4. Intelligent agents for human-robot interactionp. 394
4.1. HuDL, humans and robots working togetherp. 394
4.1.1 Speechp. 397
4.1.2 Gesturep. 397
4.1.3 Human detection and localizationp. 398
4.1.4 Face detection and trackingp. 398
4.1.5 Skin detection and trackingp. 398
4.1.6 Sound localizationp. 399
4.1.7 Identification of usersp. 399
4.1.8 Physical interactionp. 399
4.2. The human agentp. 399
4.3. The self agentp. 403
5. Resultsp. 405
6. Conclusions and future workp. 407
Referencesp. 408
Chapter 12 Computerized obstacle avoidance systems for the blind and visually impairedp. 413
1. Introductionp. 414
2. Conventional electronic travel aidsp. 414
3. Mobile robotics technologies for the visually impairedp. 416
3.1. Mobile robot obstacle avoidance sensorsp. 416
3.2. Mobile robot obstacle avoidancep. 418
3.2.1 The vector field histogram method for obstacle avoidancep. 418
3.2.2 Limitations of mobile robots as guides for the blindp. 422
4. The NavBeltp. 422
4.1. Conceptp. 422
4.2. Implementation of the guidance modep. 428
4.3. Implementation of the image modep. 428
4.4. Experimental resultsp. 432
4.4.1 Experiments with real obstaclesp. 432
4.4.2 Experiments with different walking patternsp. 432
4.5. Conclusions on the NavBeltp. 433
5. The GuideCanep. 434
5.1. Functional descriptionp. 434
5.2. Guidance signals versus obstacle informationp. 437
5.3. Information transferp. 437
5.4. Hardware implementationp. 438
5.4.1 Mechanical hardwarep. 438
5.4.2 Electronic hardwarep. 440
5.5. Software implementationp. 441
5.6. Experimental resultsp. 443
6. Discussionp. 445
Referencesp. 446
Chapter 13 Advanced design concepts for a knee-ankle-foot orthosisp. 449
1. Introductionp. 450
2. Historyp. 452
3. Current knee-ankle-foot orthosis designp. 452
4. Advanced concepts in orthosis designp. 453
4.1. Logic-controlled electromechanical free-knee orthosisp. 453
4.2. UTX--swing orthosisp. 461
4.3. Selectively lockable knee bracep. 464
5. Design critiquep. 468
Referencesp. 468
Index of acronyms and abbreviationsp. 471
Index of termsp. 473
Go to:Top of Page