Skip to:Content
|
Bottom
Cover image for High-speed circuit board signal integrity
Title:
High-speed circuit board signal integrity
Personal Author:
Series:
Artech House microwave library
Publication Information:
Boston, MA : Artech House, 2004
ISBN:
9781580531313

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010077648 TK7868.P7 T44 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

This engineering reference book covers the theoretical and practical aspects of high-speed digital signalling at the level of the printed circuit board.


Author Notes

Stephen C. Thierauf is presently chief scientist (technology) at SiSOFT


Table of Contents

Prefacep. xiii
Chapter 1 Characteristics and Construction of Printed Wiring Boardsp. 1
1.1 Introductionp. 1
1.2 Unit Systemp. 1
1.3 PWB Constructionp. 2
1.3.1 Resinsp. 3
1.3.2 Alternate Resin Systemsp. 3
1.3.3 Reinforcementsp. 5
1.3.4 Variability in Building Stackupsp. 6
1.3.5 Mixing Laminate Typesp. 7
1.4 PWB Tracesp. 7
1.4.1 Copper Claddingp. 8
1.4.2 Copper Weights and Thicknessp. 9
1.4.3 Plating the Surface Tracesp. 9
1.4.4 Trace Etch Shape Effectsp. 9
1.5 Viasp. 10
1.5.1 Via Aspect Ratiop. 13
1.6 Surface Finishes and Solder Maskp. 14
1.7 Summaryp. 14
Referencesp. 15
Chapter 2 Resistance of Etched Conductorsp. 17
2.1 Introductionp. 17
2.2 Resistance at Low Frequenciesp. 17
2.3 Loop Resistance and the Proximity Effectp. 20
2.3.1 Resistance Matrixp. 21
2.3.2 Proximity Effectp. 22
2.4 Resistance Increase with Frequency: Skin Effectp. 24
2.5 Hand Calculations of Frequency-Dependent Resistancep. 27
2.5.1 Return Path Resistancep. 28
2.5.2 Conductor Resistancep. 28
2.5.3 Total Loop Resistancep. 29
2.6 Resistance Increase Due to Surface Roughnessp. 29
2.7 Summaryp. 30
Referencesp. 30
Chapter 3 Capacitance of Etched Conductorsp. 31
3.1 Introductionp. 31
3.2 Capacitance and Chargep. 31
3.2.1 Dielectric Constantp. 32
3.3 Parallel Plate Capacitorp. 33
3.4 Self and Mutual Capacitancep. 35
3.5 Capacitance Matrixp. 37
3.6 Dielectric Lossesp. 39
3.6.1 Reactance and Displacement Currentp. 40
3.6.2 Loss Tangentp. 40
3.6.3 Calculating Loss Tangent and Conductance Gp. 41
3.7 Environmental Effects on Laminate [epsilon subscript r] and Loss Tangentp. 43
3.7.1 Temperature Effectsp. 44
3.7.2 Moisture Effectsp. 44
3.8 Summaryp. 45
Referencesp. 45
Chapter 4 Inductance of Etched Conductorsp. 47
4.1 Introductionp. 47
4.2 Field Theoryp. 47
4.2.1 Permeabilityp. 48
4.2.2 Inductancep. 48
4.2.3 Internal and External Inductancep. 49
4.2.4 Partial Inductancep. 49
4.2.5 Reciprocity Principal and Transverse Electromagnetic Modep. 50
4.3 Circuit Behavior of Inductancep. 51
4.3.1 Inductive Voltage Dropp. 53
4.3.2 Inductive Reactancep. 54
4.4 Inductance Matrixp. 55
4.4.1 Using the Reciprocity Principle to Obtain the Inductance Matrix from a Capacitance Matrixp. 55
4.5 Mutual Inductancep. 55
4.5.1 Coupling Coefficientp. 56
4.5.2 Beneficial Effects of Mutual Inductancep. 57
4.5.3 Deleterious Effects of Mutual Inductancep. 59
4.6 Hand Calculations for Inductancep. 60
4.6.1 Inductance of a Wire Above a Return Planep. 60
4.6.2 Inductance of Side-by-Side Wiresp. 61
4.6.3 Inductance of Parallel Platesp. 61
4.6.4 Inductance of Microstripp. 63
4.6.5 Inductance of Striplinep. 63
4.7 Summaryp. 64
Referencesp. 65
Chapter 5 Transmission Linesp. 67
5.1 Introductionp. 67
5.2 General Circuit Model of a Lossy Transmission Linep. 67
5.2.1 Relationship Between [omega]L and Rp. 70
5.2.2 Relationship Between [omega]C and Gp. 70
5.3 Impedancep. 71
5.3.1 Calculating Impedancep. 72
5.4 Traveling Wavesp. 73
5.4.1 Propagation Constantp. 74
5.4.2 Phase Shift, Delay, and Wavelengthp. 75
5.4.3 Phase Constant at High Frequencies When R and G Are Smallp. 78
5.4.4 Attenuationp. 79
5.4.5 Neper and Decibel Conversionp. 80
5.5 Summary and Worked Examplesp. 82
Referencesp. 86
Chapter 6 Return Paths and Power Supply Decouplingp. 87
6.1 Introductionp. 87
6.2 Proper Return Pathsp. 87
6.2.1 Return Paths of Ground-Referenced Signalsp. 89
6.2.2 Striplinep. 90
6.3 Stripline Routed Between Power and Ground Planesp. 90
6.3.1 When Power Plane Voltage Is the Same as Signal Voltagep. 90
6.3.2 When Power Plane Voltage Differs from Signal Voltagep. 93
6.3.3 Power System Inductancep. 94
6.4 Split Planes, Motes, and Layer Changesp. 95
6.4.1 Motesp. 95
6.4.2 Layer Changesp. 98
6.5 Connectors and Dense Pin Fieldsp. 98
6.5.1 Plane Perforationp. 99
6.5.2 Antipadsp. 99
6.5.3 Nonfunctional Padsp. 102
6.5.4 Guidelines for Routing Through Dense Pin Fieldsp. 103
6.6 Power Supply Bypass/Decoupling Capacitancep. 105
6.6.1 Power Supply Integrityp. 106
6.6.2 Distributed Power Supply Interconnect Modelp. 110
6.7 Connecting to Decoupling Capacitorsp. 112
6.7.1 Via Inductancep. 112
6.8 Summaryp. 114
Referencesp. 115
Chapter 7 Serial Communication, Loss, and Equalizationp. 117
7.1 Introductionp. 117
7.2 Harmonic Contents of a Data Streamp. 117
7.2.1 Line Spectrap. 119
7.2.2 Combining Harmonics to Create a Pulsep. 120
7.2.3 The Fourier Integralp. 122
7.2.4 Rectangular Pulses with Nonzero Rise Timesp. 123
7.3 Line Codesp. 125
7.4 Bit Rate and Data Ratep. 126
7.5 Block Codes Used in Serial Transmissionp. 128
7.6 ISIp. 130
7.6.1 Dispersionp. 130
7.6.2 Lone 1-Bit Patternp. 131
7.7 Eye Diagramsp. 132
7.8 Equalization and Preemphasisp. 134
7.8.1 Preemphasisp. 134
7.8.2 Passive Equalizersp. 137
7.8.3 Passive RC Equalizerp. 139
7.9 DC-Blocking Capacitorsp. 140
7.9.1 Calculating the Coupling Capacitor Valuep. 142
7.10 Summaryp. 145
Referencesp. 146
Chapter 8 Single-Ended and Differential Signaling and Crosstalkp. 149
8.1 Introductionp. 149
8.2 Odd and Even Modesp. 149
8.2.1 Circuit Description of Odd and Even Modesp. 150
8.2.2 Coupling Coefficientp. 153
8.2.3 Stripline and Microstrip Odd- and Even-Mode Timingp. 155
8.2.4 Effects of Spacing on Impedancep. 157
8.3 Multiconductor Transmission Linesp. 158
8.3.1 Bus Segmentation for Simulation Purposesp. 159
8.3.2 Switching Behavior of a Wide Busp. 160
8.3.3 Simulation Results for Loosely Coupled Linesp. 161
8.3.4 Simulation Results for Tightly Coupled Linesp. 162
8.3.5 Data-Dependent Timing Jitter in Multiconductor Transmission Linesp. 164
8.4 Differential Signaling, Termination, and Layout Rulesp. 165
8.4.1 Differential Signals and Noise Rejectionp. 165
8.4.2 Differential Impedance and Terminationp. 166
8.4.3 Reflection Coefficient and Return Lossp. 170
8.4.4 PWB Layout Rules When Routing Differential Pairsp. 172
8.5 Crosstalkp. 173
8.5.1 Coupled-Line Circuit Modelp. 175
8.5.2 NEXT and FEXT Coupling Factorsp. 177
8.5.3 Using K[subscript b] to Predict NEXTp. 178
8.5.4 Using K[subscript f] to Predict FEXTp. 179
8.5.5 Guard Tracesp. 179
8.5.6 Crosstalk Worked Examplep. 180
8.5.7 Crosstalk Summaryp. 182
8.6 Summaryp. 182
Referencesp. 183
Chapter 9 Characteristics of Printed Wiring Stripline and Microstripsp. 185
9.1 Introductionp. 185
9.2 Striplinep. 185
9.2.1 Time of Flightp. 186
9.2.2 Impedance Relationship Between Trace Width, Thickness, and Plate Spacingp. 187
9.2.3 Mask Biasing to Obtain a Specific Impedancep. 189
9.2.4 Hand Calculation of Z[subscript o]p. 189
9.2.5 Stripline Fabricationp. 191
9.3 Microstripp. 193
9.3.1 Exposed Microstripp. 194
9.3.2 Solder Mask and Embedded Microstripp. 196
9.4 Losses in Stripline and Microstripp. 197
9.4.1 Dielectric Lossp. 199
9.4.2 Conductor Lossp. 199
9.5 Microstrip and Stripline Differential Pairsp. 201
9.5.1 Broadside Coupled Striplinep. 201
9.5.2 Edge-Coupled Striplinep. 204
9.5.3 Edge-Coupled Microstripp. 205
9.6 Summaryp. 206
Referencesp. 207
Chapter 10 Surface Mount Capacitorsp. 209
10.1 Introductionp. 209
10.2 Ceramic Surface Mount Capacitorsp. 209
10.2.1 Dielectric Temperature Characteristics Classificationp. 209
10.2.2 Body Size Codingp. 211
10.2.3 Frequency Responsep. 212
10.2.4 Inductive Effects: ESLp. 214
10.2.5 Dielectric and Conductor Losses: ESRp. 215
10.2.6 Leakage Currents: Insulation Resistancep. 218
10.2.7 Electrical Modelp. 219
10.2.8 MLCC Capacitor Agingp. 220
10.2.9 Capacitance Change with DC Bias and Frequencyp. 221
10.2.10 MLCC Usage Guidelinesp. 222
10.3 SMT Tantalum Capacitorsp. 223
10.3.1 Body Size Codingp. 223
10.3.2 Frequency Responsep. 224
10.3.3 Electrical Modelp. 225
10.3.4 Agingp. 225
10.3.5 Effects of DC Bias, Temperature, and Relative Humidityp. 225
10.3.6 Failure of Tantalum Capacitorsp. 226
10.3.7 ESR and Self Heating: Voltage and Temperature Deratingp. 227
10.3.8 Usage Guidelinesp. 227
10.4 Replacing Tantalum with High-Valued Ceramic Capacitorsp. 228
Referencesp. 230
Appendix Conversion Factorsp. 231
About the Authorp. 233
Indexp. 235
Go to:Top of Page