Skip to:Content
|
Bottom
Cover image for Biopotential readout circuits for portable acquisition systems
Title:
Biopotential readout circuits for portable acquisition systems
Personal Author:
Series:
Analog circuits and signal processing
Publication Information:
[S.l.] : Springer Science+Business Media B.V., 2009
Physical Description:
xv. 164 p. : ill. ; 24 cm.
ISBN:
9781402090929

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010193582 R856 Y39 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

Biopotential Readout Circuits for Portable Acquisition Systems describes one of the main building blocks of such miniaturized biomedical signal acquisition systems. The focus of this book is on the implementation of low-power and high-performance integrated circuit building blocks that can be used to extract biopotential signals from conventional biopotential electrodes. New instrumentation amplifier architectures are introduced and their design is described in detail. These amplifiers are used to implement complete acquisition demonstrator systems that are a stepping stone towards practical miniaturized and low-power systems.


Table of Contents

1 Introductionp. 1
1.1 Ambulatory Health Care Systemsp. 1
1.2 Body Area Networksp. 1
1.3 Scope of the Bookp. 2
2 Introduction to Biopotential Acquisitionp. 5
2.1 Introductionp. 5
2.2 Introduction to Biopotential Signalsp. 5
2.3 Introduction to Biopotential Electrodesp. 6
2.3.1 Equivalent Circuit Modelp. 7
2.3.2 Types of Biopotential Electrodesp. 8
2.4 Introduction to Biopotential Amplifiersp. 9
2.4.1 Interference Theoryp. 10
2.4.2 Noise-Efficiency Factor (NEF) of Biopotential Amplifiersp. 11
2.4.3 State-of-the-Art in Instrumentation Amplifier Designp. 12
2.5 Introduction to Chopper Modulation Techniquep. 13
2.5.1 Noise Analysis of Chopper Modulation Techniquep. 14
2.5.2 Charge Injection and Residual Offset of Chopper Modulated Amplifiersp. 15
2.5.3 Signal Distortion in Chopper Modulated Amplifiersp. 17
2.5.4 CMRR of the Chopper Modulated Amplifiersp. 18
2.6 Conclusionsp. 18
3 24-Channel EEG Readout Front-End ASICp. 21
3.1 Introductionp. 21
3.2 ASIC Architecturep. 21
3.3 Current Balancing IAp. 22
3.3.1 Implementationp. 22
3.3.2 Measurement of Performancep. 24
3.4 CMRR Model for Biopotential Instrumentation Amplifiersp. 25
3.4.1 Systematic CMRRp. 26
3.4.2 CMRR Limit Due to Differential DC Electrode Offsetp. 28
3.4.3 Verification of the CMRR Modelp. 29
3.5 Programmable Gain Stagep. 30
3.5.1 Finite-Gain Compensated SC Amplifierp. 30
3.5.2 Programmable Gain Stage Implementationp. 32
3.6 Test Resultsp. 34
3.7 Conclusionsp. 36
4 Biopotential Readout Front-End ASICsp. 39
4.1 Introductionp. 39
4.2 AC Coupled Chopper Modulated IA (ACCIA)p. 40
4.2.1 Architecture of the ACCIAp. 40
4.2.2 Architecture of the CBIAp. 44
4.2.3 Power-Noise Performance of the ACCIAp. 48
4.3 Chopping Spike Filter (CSF)p. 50
4.4 Low-Power Programmable Gain Stagep. 51
4.5 Single-Channel ExG Readout Front-Endp. 53
4.5.1 Implementationp. 53
4.5.2 Measurement of Performancep. 56
4.5.3 Biological Test Resultsp. 61
4.6 Eight-Channel EEG Readout Front-Endp. 63
4.6.1 Implementationp. 63
4.6.2 Measurement of Performancep. 68
4.6.3 Biological Test Resultsp. 71
4.7 Comparison with the State-of-the-Artp. 75
4.8 Conclusionsp. 77
5 A Complete Biopotential Acquisition ASICp. 79
5.1 Introductionp. 79
5.2 ASIC Architecturep. 79
5.3 Bias Generator Circuitp. 81
5.4 Class-AB Buffer Architecturep. 85
5.5 ACCIA with Coarse-Fine Servo-Loopp. 86
5.5.1 Structure of the ACCIAp. 86
5.5.2 Coarse Transconductance (CGM) Stagep. 90
5.5.3 Fine Transconductance (FGM) Stagep. 94
5.5.4 Integrator Stagep. 94
5.5.5 Current Balancing IA (CBIA) Architecturep. 95
5.5.6 Gain Stagep. 97
5.5.7 Implementation of the ACCIAp. 97
5.5.8 Fast Start-Up of the ACCIAp. 99
5.5.9 Power-Noise Performance of the ACCIAp. 100
5.5.10 Measurement of Performancep. 102
5.5.11 Comparison with State-of-the-Artp. 105
5.6 Chopping Spike Filterp. 106
5.7 Low-Power Programmable Gain Stagep. 107
5.8 Readout Front-End Channel Test Resultsp. 109
5.9 Square Wave Relaxation Oscillatorp. 110
5.10 Analog-to-Digital Converterp. 113
5.10.1 Basic Operation Principlep. 113
5.10.2 Architecturep. 114
5.10.3 Capacitive DAC Implementationp. 117
5.10.4 Low-Offset Comparator Implementationp. 119
5.10.5 Test Resultsp. 123
5.11 Impedance Measurement and Calibration Modesp. 125
5.12 Biological Test Resultsp. 129
5.13 Summary of the Biopotential Acquisition ASICp. 129
5.14 Conclusionsp. 131
6 Wireless Biopotential Acquisition Systemsp. 135
6.1 Introductionp. 135
6.2 A Wireless VEMP Acquisition Systemp. 136
6.3 A Wireless Two-Channel ExG Acquisition Systemp. 137
6.4 A1cm3 WirelessEight-ChannelEEGAcquisitionSystemp. 141
6.5 Conclusionsp. 145
7 Conclusionsp. 147
7.1 Achievementsp. 147
7.2 Suggestions for Future Workp. 149
Appendixp. 151
Referencesp. 157
Indexp. 163
Go to:Top of Page