Skip to:Content
|
Bottom
Cover image for PEM fuel cell modeling and simulation using Matlab
Title:
PEM fuel cell modeling and simulation using Matlab
Personal Author:
Publication Information:
Boston, MA : Academic Press/Elsevier, 2008
ISBN:
9780123742599

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010164162 TK2931 S64 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money.Easy to read and understand, this book provides design and modelling tips for fuel cell components such as: modelling proton exchange structure, catalyst layers, gas diffusion, fuel distribution structures, fuel cell stacks and fuel cell plant. This book includes design advice and MATLAB and FEMLAB codes for Fuel Cell types such as: polymer electrolyte, direct methanol and solid oxide fuel cells. This book also includes types for one, two and three dimensional modeling and two-phase flow phenomena and microfluidics.


Table of Contents

Acknowledgmentsp. ix
1 An Introduction to Fuel Cellsp. 1
1.1 Introductionp. 1
1.2 What Is a Fuel Cell?p. 2
1.3 Why Do We Need Fuel Cells?p. 4
1.4 History of Fuel Cellsp. 6
1.5 Mathematical Models in the Literaturep. 8
1.6 Creating Mathematical Modelsp. 12
Chapter Summaryp. 13
Problemsp. 14
Bibliographyp. 14
2 Fuel Cell Thermodynamicsp. 15
2.1 Introductionp. 15
2.2 Enthalpyp. 16
2.3 Specific Heatsp. 18
2.4 Entropyp. 27
2.5 Free Energy Change of a Chemical Reactionp. 33
2.6 Fuel Cell Reversible and Net Output Voltagep. 44
2.7 Theoretical Fuel Cell Efficiencyp. 44
Chapter Summaryp. 47
Problemsp. 47
Bibliographyp. 47
3 Fuel Cell Electrochemistryp. 49
3.1 Introductionp. 49
3.2 Basic Electrokinetics Conceptsp. 49
3.3 Charge Transferp. 51
3.4 Activation Polarization for Charge Transfer Reactionsp. 53
3.5 Electrode Kineticsp. 54
3.6 Voltage Lossesp. 64
3.7 Internal Currents and Crossover Currentsp. 74
Chapter Summaryp. 75
Problemsp. 75
Bibliographyp. 76
4 Fuel Cell Charge Transportp. 77
4.1 Introductionp. 77
4.2 Voltage Loss Due to Charge Transportp. 77
4.3 Electron Conductivity of Metalsp. 88
4.4 Ionic Conductivity of Polymer Electrolytesp. 89
Chapter Summaryp. 94
Problemsp. 96
Bibliographyp. 96
5 Fuel Cell Mass Transportp. 97
5.1 Introductionp. 97
5.2 Fuel Cell Mass Balancesp. 98
5.3 Convective Mass Transport from Flow Channels to Electrodep. 108
5.4 Diffusive Mass Transport in Electrodesp. 110
5.5 Convective Mass Transport in Flow Field Platesp. 114
5.6 Mass Transport Equations in the Literaturep. 120
Chapter Summaryp. 124
Problemsp. 124
Bibliographyp. 125
6 Heat Transferp. 127
6.1 Introductionp. 127
6.2 Basics of Heat Transferp. 128
6.3 Fuel Cell Energy Balancesp. 132
6.4 Fuel Cell Heat Managementp. 156
Chapter Summaryp. 164
Problemsp. 164
Bibliographyp. 165
7 Modeling the Proton Exchange Structurep. 167
7.1 Introductionp. 167
7.2 Physical Description of the Proton Exchange Membranep. 168
7.3 Types of Modelsp. 171
7.4 Proton Exchange Membrane Modeling Examplep. 177
Chapter Summaryp. 192
Problemsp. 193
Bibliographyp. 193
8 Modeling the Gas Diffusion Layersp. 197
8.1 Introductionp. 197
8.2 Physical Description of the Gas Diffusion Layerp. 198
8.3 Basics of Modeling Porous Mediap. 199
8.4 Modes of Transport in Porous Mediap. 202
8.5 Types of Modelsp. 210
8.6 GDL Modeling Examplep. 215
Chapter Summaryp. 236
Problemsp. 236
Bibliographyp. 239
9 Modeling the Catalyst Layersp. 243
9.1 Introductionp. 243
9.2 Physical Description of the PEM Fuel Cell Catalyst Layersp. 245
9.3 General Equationsp. 246
9.4 Types of Modelsp. 248
9.5 Heat Transport in the Catalyst Layersp. 255
Chapter Summaryp. 262
Problemsp. 265
Bibliographyp. 265
10 Modeling the Flow Field Platesp. 269
10.1 Introductionp. 269
10.2 Flow Field Plate Materialsp. 271
10.3 Flow Field Designp. 272
10.4 Channel Shape, Dimensions, and Spacingp. 275
10.5 Pressure Drop in Flow Channelsp. 276
10.6 Heat Transfer from the Plate Channels to the Gas
Chapter Summaryp. 296
Problemsp. 296
Bibliographyp. 297
11 Modeling Micro Fuel Cellsp. 299
11.1 Introductionp. 299
11.2 Micro PEM Fuel Cells in the Literaturep. 301
11.3 Microfluidicsp. 307
11.4 Flow Rates and Pressuresp. 313
11.5 Bubbles and Particlesp. 314
11.6 Capillary Effectsp. 315
11.7 Single- and Two-Phase Pressure Dropp. 316
11.8 Velocity in Microchannelsp. 318
Chapter Summaryp. 330
Problemsp. 330
Bibliographyp. 332
12 Modeling Fuel Cell Stacksp. 335
12.1 Introductionp. 335
12.2 Fuel Cell Stack Sizingp. 335
12.3 Number of Cellsp. 337
12.4 Stack Configurationp. 338
12.5 Distribution of Fuel and Oxidants to the Cellsp. 340
12.6 Stack Clampingp. 346
Chapter Summaryp. 359
Problemsp. 360
Bibliographyp. 360
13 Fuel Cell System Designp. 365
13.1 Introductionp. 365
13.2 Fuel Subsystemp. 366
Chapter Summaryp. 390
Problemsp. 390
Bibliographyp. 391
14 Model Validationp. 393
14.1 Introductionp. 393
14.2 Residualsp. 393
14.3 Normal Distribution of Normal Random Errorsp. 398
14.4 Missing Terms in the Functional Part of the Modelp. 401
14.5 Unnecessary Terms in the Modelp. 405
Chapter Summaryp. 407
Problemsp. 408
Bibliographyp. 408
Appendix Ap. 409
Appendix Bp. 411
Appendix Cp. 413
Appendix Dp. 415
Appendix Ep. 417
Appendix Fp. 419
Appendix Gp. 427
Appendix Hp. 429
Appendix Ip. 431
Appendix Jp. 433
Indexp. 435
Go to:Top of Page