Skip to:Content
|
Bottom
Cover image for Wireless communications : algorithmic techniques
Title:
Wireless communications : algorithmic techniques
Publication Information:
ENK, : Wiley, 2013.
Physical Description:
xix, 724 p. : ill. ; 26 cm.
ISBN:
9780470512395
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010323157 TK5102.83 W574 2013 Open Access Book Book
Searching...

On Order

Summary

Summary

This book introduces the theoretical elements at the basis of various classes of algorithms commonly employed in the physical layer (and, in part, in MAC layer) of wireless communications systems. It focuses on single user systems, so ignoring multiple access techniques. Moreover, emphasis is put on single-input single-output (SISO) systems, although some relevant topics about multiple-input multiple-output (MIMO) systems are also illustrated. Comprehensive wireless specific guide to algorithmic techniques Provides a detailed analysis of channel equalization and channel coding for wireless applications Unique conceptual approach focusing in single user systems Covers algebraic decoding, modulation techniques, channel coding and channel equalisation


Author Notes

Giorgio M. Vitetta, University of Modena and Reggio Emilia, Italy
Desmond P. Taylor, University of Canterbury, Christchurch, New Zealand
Giulio Colavolpe, University of Parma, Italy
Fabrizio Pancaldi, University of Modena and Reggio Emilia, Italy
Philippa A. Martin, University of Canterbury, Christchurch, New Zealand


Table of Contents

Prefacep. xi
List of Acronymsp. xiii
1 Introductionp. 1
1.1 Structure of a Digital Communication Systemp. 3
1.2 Plan of the Bookp. 7
1.3 Further Readingp. 8
Part I Modulation and Detection
2 Wireless Channelsp. 11
2.1 Introductionp. 11
2.2 Mathematical Description of SISO Wireless Channelsp. 16
2.2.1 Input-Output Characterization of a SISO Wireless Channelp. 16
2.2.2 Statistical Characterization of a SISO Wireless Channelp. 23
2.2.3 Reduced-Complexity Statistical Models for SISO Channelsp. 36
2.3 Mathematical Description and Modeling of MTMO Wireless Channelsp. 44
2.3.1 Input-Output Characterization of a MIMO Wireless Channelp. 45
2.3.2 Statistical Characterization of a MIMO Wireless Channelp. 50
2.3.3 Reduced-Complexity Statistical Modeling of MIMO Channelsp. 57
2.4 Historical Notesp. 57
2.4.1 Large-Scale Fading Modelsp. 58
2.4.2 Small-Scale Fading Modelsp. 60
2.5 Further Readingp. 64
3 Digital Modulation Techniquesp. 65
3.1 Introductionp. 65
3.2 General Structure of a Digital Modulatorp. 65
3.3 Representation of Digital Modulated Waveforms on an Orthonormal Basisp. 68
3.4 Bandwidth of Digital Modulationsp. 70
3.5 Passband PAMp. 74
3.5.1 Signal Modelp. 74
3.5.2 Constellation Selectionp. 76
3.5.3 Data Block Transmission with Passband PAM Signals for Frequency-Domain Equalizationp. 79
3.5.4 Power Spectral Density of Linear Modulationsp. 80
3.6 Continuous Phase Modulationp. 86
3.6.1 Signal Modelp. 86
3.6.2 Full-Response CPMp. 89
3.6.3 Partial-Response CPMp. 93
3.6.4 Multi-h CPMp. 98
3.6.5 Alternative Representations of CPM Signalsp. 100
3.6.6 Data Block Transmission with CPM Signals for Frequency-Domain Equalizationp. 107
3.6.7 Power Spectral Density of Continuous Phase Modulationsp. 110
3.7 OFDMp. 116
3.7.1 Introductionp. 116
3.7.2 OFDM Signal Modelp. 122
3.7.3 Power Spectral Density of OFDMp. 131
3.7.4 The PAPR Problem in OFDMp. 135
3.8 Lattice-Based Multidimensional Modulationsp. 137
3.8.1 Lattices: Basic Definitions and Propertiesp. 137
3.8.2 Elementary Constructions of Latticesp. 144
3.9 Spectral Properties of a Digital Modulation at the Output of a Wireless Channelp. 146
3.10 Historical Notesp. 149
3.10.1 Passband PAM Signalingp. 149
3.10.2 CPM Signalingp. 151
3.10.3 MCM Signalingp. 152
3.10.4 Power Spectral Density of Digital Modulationsp. 153
3.11 Further Readingp. 154
4 Detection of Digital Signals over Wireless Channels: Decision Rulesp. 155
4.1 Introductionp. 155
4.2 Wireless Digital Communication Systems: Modeling, Receiver Architecture and Discretization of the Received Signalp. 156
4.2.1 General Model of a Wireless Communication Systemp. 156
4.2.2 Receiver Architecturesp. 157
4.3 Optimum Detection in a Vector Communication Systemp. 159
4.3.1 Description of a Vector Communication Systemp. 159
4.3.2 Detection Strategies and Error Probabilitiesp. 159
4.3.3 MAP and ML Detection Strategiesp. 162
4.3.4 Diversity Reception and Some Useful Theorems about Data Detectionp. 167
4.4 Mathematical Models for the Receiver Vectorp. 168
4.4.1 Extraction of a Set of Sufficient Statistics from the Received Signalp. 169
4.4.2 Received Vector for PAM Signalingp. 177
4.4.3 Received Vector for CPM Signalingp. 181
4.4.4 Received Vector for OFDM Signalingp. 184
4.5 Decision Strategies in the Presence of Channel Parameters: Optimal Metrics and Performance Boundsp. 188
4.5.1 Signal Model and Algorithm Classificationp. 188
4.5.2 Detection for Transmission over of a Known Channelp. 189
4.5.3 Detection in the Presence of a Statistically Known Channelp. 198
4.5.4 Detection in the Presence of an Unknown Channelp. 205
4.6 Expectation-Maximization Techniques for Data Detectionp. 207
4.6.1 The EM Algorithmp. 207
4.6.2 The Bayesian EM Algorithmp. 210
4.6.3 Initialization and Convergence of EM-Type Algorithmsp. 213
4.6.4 Other EM Techniquesp. 213
4.7 Historical Notesp. 214
4.8 Further Readingp. 216
5 Data-Aided Algorithms for Channel Estimationp. 217
5.1 Channel Estimation Techniquesp. 218
5.1.1 Introductionp. 218
5.1.2 Feedforward Estimationp. 219
5.1.3 Recursive Estimationp. 222
5.1.4 The Principle of Per-Survivor Processingp. 227
5.2 Cramér-Rao Bounds for Data-Aided Channel Estimationp. 228
5.3 Data-Aided CIR Estimation Algorithms in PATsp. 235
5.3.1 PAT Modeling and Optimizationp. 235
5.3.2 A Signal Processing Perspective on PAT Techniquesp. 238
5.4 Extensions to MTMO Channelsp. 244
5.4.1 Channel Estimation in SC MIMO PATsp. 244
5.4.2 Channel Estimation in MC MIMO PATsp. 245
5.5 Historical Notesp. 245
5.6 Further Readingp. 247
6 Detection of Digital Signals over Wireless Channels: Channel Equalization Algorithmsp. 249
6.1 Introductionp. 249
6.2 Channel Equalization of Single-Carrier Modulations: Known CIRp. 250
6.2.1 Channel Equalization in the Time Domainp. 250
6.2.2 Channel Equalization in the Frequency Domainp. 281
6.3 Channel Equalization of Multicarrier Modulations: Known CIRp. 286
6.3.1 Optimal Detection in the Absence of IBI and ICIp. 287
6.3.2 ICI Cancelation Techniques for Time-Varying Channelsp. 289
6.3.3 Equalization Strategies for IBI Compensationp. 292
6.4 Channel Equalization of Single Carrier Modulations: Statistically Known CIRp. 292
6.4.1 MLSDp. 292
6.4.2 Other Equalization Strategies with Frequency-Flat Fadingp. 299
6.5 Channel Equalization of Multicarrier Modulations: Statistically Known CIRp. 301
6.6 Joint Channel and Data Estimation: Single-Carrier Modulationsp. 302
6.6.1 Adaptive MLSDp. 302
6.6.2 PSPMLSDp. 303
6.6.3 Adaptive MAPBD/MAPSDp. 305
6.6.4 Equalization Strategies Employing Reference-Based Channel Estimators with Frequency-Flat Fadingp. 306
6.7 Joint Channel and Data Estimation: Multicarrier Modulationsp. 307
6.7.1 Pilot-Based Equalization Techniquesp. 308
6.7.2 Semiblind Equalization Techniquesp. 310
6.8 Extensions to the MTMO Systemsp. 311
6.8.1 Equalization Techniques for Single-Carrier MIMO Communicationsp. 311
6.8.2 Equalization Techniques for MIMO-OFDM Communicationsp. 314
6.9 Historical Notesp. 315
6.10 Further Readingp. 319
Part II Information Theory and Coding Schemes
7 Elements of Information Theoryp. 323
7.1 Introductionp. 323
7.2 Capacity for Discrete Sources and Channelsp. 323
7.2.1 The Discrete Memoryless Channelp. 324
7.2.2 The Continuous-Output Channelp. 325
7.2.3 Channel Capacityp. 326
7.3 Capacity of MIMO Fading Channelsp. 330
7.3.1 Frequency-Flat Fading Channelp. 330
7.3.2 MIMO Channel Capacityp. 332
7.3.3 Random Channelp. 335
7.4 Historical Notesp. 337
7.5 Further Readingp. 338
8 An Introduction to Channel Coding Techniquesp. 339
8.1 Basic Principlesp. 339
8.2 Interleavingp. 341
8.3 Taxonomy of Channel Codesp. 343
8.4 Taxonomy of Coded Modulationsp. 344
8.5 Organization of the Following Chaptersp. 346
8.6 Historical Notesp. 346
8.7 Further Readingp. 347
9 Classical Coding Schemesp. 349
9.1 Block Codesp. 349
9.1.1 Introductionp. 349
9.1.2 Structure of Linear Codes over GF(q)p. 350
9.1.3 Properties of Linear Block Codesp. 352
9.1.4 Cyclic Codesp. 357
9.1.5 Other Relevant Linear Block Codesp. 369
9.1.6 Decoding Techniques for Block Codesp. 371
9.1.7 Error Performancep. 388
9.2 Convolutional Codesp. 390
9.2.1 Introductionp. 390
9.2.2 Properties of Convolutional Codesp. 394
9.2.3 Maximum Likelihood Decoding of Convolutional Codesp. 408
9.2.4 MAP Decoding of Convolutional Codesp. 413
9.2.5 Sequential Decoding of Convolutional Codesp. 419
9.2.6 Error Performance of ML Decoding of Convolutional Codesp. 422
9.3 Classical Concatenated Codingp. 432
9.3.1 Parallel Concatenation: Product Codesp. 432
9.3.2 Serial Concatenation: Outer RS Codep. 434
9.4 Historical Notesp. 435
9.4.1 Algebraic Codingp. 435
9.4.2 Probabilistic Codingp. 438
9.5 Further Readingp. 439
10 Modern Coding Schemesp. 441
10.1 Introductionp. 441
10.2 Concatenated Convolutional Codesp. 442
10.2.1 Parallel Concatenated Coding Schemesp. 442
10.2.2 Serially Concatenated Coding Schemesp. 444
10.2.3 Hybrid Concatenated Coding Schemesp. 445
10.3 Concatenated Block Codesp. 445
10.4 Other Modern Concatenated Coding Schemesp. 446
10.4.1 Repeat and Accumulate Codesp. 446
10.4.2 Serial Concatenation of Coding Schemes and Differential Modulationsp. 447
10.5 Iterative Decoding Techniques for Concatenated Codesp. 448
10.5.1 The Turbo Principlep. 448
10.5.2 SiSo Decoding Algorithmsp. 455
10.5.3 Applicationsp. 459
10.5.4 Performance Boundsp. 465
10.6 Low-Density Parity Check Codesp. 468
10.6.1 Definition and Classificationp. 468
10.6.2 Graphic Representation of LDPC Codes via Tanner Graphsp. 468
10.6.3 Minimum Distance and Weight Spectrump. 471
10.6.4 LDPC Code Design Approachesp. 472
10.6.5 Efficient Algorithms for LDPC Encodingp. 477
10.7 Decoding Techniques for LDPC Codesp. 478
10.7.1 Introduction to Decoding via Message Passing Algorithmsp. 478
10.7.2 SPA and MSAp. 481
10.7.3 Technical Issues on LDPC Decoding via MPp. 489
10.8 Codes on Graphsp. 494
10.9 Historical Notesp. 501
10.10 Further Readingp. 503
11 Signal Space Codesp. 505
11.1 Introductionp. 505
11.2 Trellis Coding with Expanded Signal Setsp. 505
11.2.1 Code Constructionp. 506
11.2.2 Decoding Algorithmsp. 517
11.2.3 Error Performancep. 518
11.3 Bit-Interleaved Coded Modulationp. 520
11.3.1 Code Constructionp. 520
11.3.2 Decoding Algorithmsp. 521
11.3.3 Error Performancep. 522
11.4 Modulation Codes Based on Multilevel Codingp. 524
11.4.1 Code Construction for AWGN Channelsp. 524
11.4.2 Multistage Decoderp. 528
11.4.3 Error Performancep. 529
11.4.4 Multilevel Codes for Rayleigh Flat Fading Channelsp. 530
11.5 Space-Time Codingp. 531
11.5.1 ST Coding for Frequency-Flat Fading Channelsp. 531
11.5.2 ST Coding for Frequency-Selective Fading Channelsp. 561
11.6 Historical Notesp. 565
11.7 Further Readingp. 566
12 Combined Equalization and Decodingp. 567
12.1 Introductionp. 567
12.2 Noniterative Techniquesp. 568
12.3 Algorithms for Combined Equalization and Decodingp. 571
12.3.1 Introductionp. 571
12.3.2 Turbo Equalization from a FG Perspectivep. 575
12.3.3 Reduced-Complexity Techniques for SiSo Equalizationp. 580
12.3.4 Turbo Equalization in the FDp. 583
12.3.5 Turbo Equalization in the Presence of an Unknown Channelp. 585
12.4 Extension to MTMOp. 586
12.5 Historical Notesp. 588
12.5.1 Reduced-Complexity SiSo Equalizationp. 588
12.5.2 Error Performance and Convergence Speed in Turbo Equalizationp. 588
12.5.3 SiSo Equalization Algorithms in the Frequency Domainp. 589
12.5.4 Use of Precodingp. 589
12.5.5 Turbo Equalization and Factor Graphsp. 589
12.5.6 Turbo Equalization for MIMO Systemsp. 589
12.5.7 Related Techniquesp. 590
12.6 Further Readingp. 590
Appendix A Fourier Transformsp. 591
Appendix B Power Spectral Density of Random Processesp. 593
B.1 Power Spectral Density of a Wide-Sense Stationary Random Processp. 593
B.2 Power Spectral Density of a Wide-Sense Cyclostationary Random Processp. 594
B.3 Power Spectral Density of a Bandpass Random Processp. 595
Appendix C Matrix Theoryp. 597
Appendix D Signal Spacesp. 601
D.1 Representation of Deterministic Signalsp. 601
D.1.1 Basic Definitionsp. 601
D.1.2 Representation of Deterministic Signals via Orthonormal Basesp. 602
D.2 Representation of Random Signals via Orthonormal Basesp. 606
Appendix E Groups, Finite Fields and Vector Spacesp. 609
E.1 Groupsp. 609
E.2 Fieldsp. 611
E.2.1 Axiomatic Definition of a Field and Finite Fieldsp. 611
E.2.2 Polynomials and Extension Fieldsp. 612
E.2.3 Other Definitions and Propertiesp. 616
E.2.4 Computation Techniques for Finite Fieldsp. 620
E.3 Vector Spacesp. 622
Appendix F Error Function and Related Functionsp. 625
Referencesp. 629
Indexp. 713
Go to:Top of Page