Skip to:Content
|
Bottom
Cover image for Evolutionary electronics : Automatic design of electronic circuits and systems by genetic algorithms
Title:
Evolutionary electronics : Automatic design of electronic circuits and systems by genetic algorithms
Personal Author:
Series:
CRC Press international series on computational intelligence
Publication Information:
Boca Raton : CRC Press, 2002
ISBN:
9780849308659

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010015775 TK7867 Z43 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

From the explosion of interest, research, and applications of evolutionary computation a new field emerges-evolutionary electronics. Focused on applying evolutionary computation concepts and techniques to the domain of electronics, many researchers now see it as holding the greatest potential for overcoming the drawbacks of conventional design techniques.

Evolutionary Electronics: Automatic Design of Electronic Circuits and Systems by Genetic Algorithms formally introduces and defines this area of research, presents its main challenges in electronic design, and explores emerging technologies. It describes the evolutionary computation paradigm and its primary algorithms, and explores topics of current interest, such as multi-objective optimization. The authors examine numerous evolutionary electronics applications, draw conclusions about those applications, and sketch the future of evolutionary computation and its applications in electronics.

In coming years, the appearance of more and more advanced technologies will increase the complexity of optimization and synthesis problems, and evolutionary electronics will almost certainly become a key to solving those problems. Evolutionary Electronics is your key to discovering and unlocking the potential of this promising new field.


Table of Contents

Unit I Introduction
Chapter 1 Introduction to Evolutionary Electronicsp. 1
1.1 Evolutionary Design of Electronic Circuits: A Prospect of the Areap. 1
1.2 Electronic Circuit Design: A Search Taskp. 6
1.3 A Brief Survey of Evolutionary Electronicsp. 9
Unit II Evolutionary Computation
Chapter 2 Introduction to Evolutionary Computationp. 15
2.1 Basic Concepts of Natural Evolutionp. 15
2.1.1 The Evolutionary Hypothesisp. 15
2.1.2 Molecular Geneticsp. 17
2.1.3 Recombination and Mutationp. 20
2.1.4 Mendelian Ratiosp. 21
2.1.5 The Evidences of Evolutionp. 23
2.2 Putting the Ideas to Work: Evolutionary Computationp. 25
2.2.1 Representationp. 27
2.2.2 Evaluationp. 32
2.2.3 Main Operatorsp. 32
2.2.3.1 Selectionp. 32
2.2.3.2 Crossoverp. 34
2.2.3.3 Mutationp. 36
2.3 The Main Evolutionary Algorithmsp. 37
2.3.1 Evolutionary Programming (EP)p. 37
2.3.2 Evolutionary Strategies (ES)p. 38
2.3.3 Genetic Algorithms (GAs)p. 39
2.3.4 Genetic Programming (GP)p. 44
Chapter 3 Advanced Topics in Evolutionary Computationp. 53
3.1 Variable Length Representation Systemsp. 53
3.1.1 Representation in Natural Systemsp. 54
3.1.2 Representation in Artificial Systemsp. 55
3.1.3 Genetic Algorithms with Variable Length Representationp. 56
3.2 Evolutionary Algorithms Using the Memory Paradigmp. 64
3.3 Multiple-Objective Optimizationp. 65
3.3.1 Evolutionary Computation Applied to Multi-Objective Optimizationp. 66
3.3.1.1 Plain Aggregating Approachesp. 67
3.3.1.2 Population-Based Non-Pareto Approachesp. 67
3.3.1.3 Pareto-Based Approachesp. 68
3.3.2 A New Approach for Multi-Objective Optimization: Energy Minimi zation Strategyp. 69
3.4 Speciation in Evolutionary Algorithmsp. 73
3.5 Deception and Epistasyp. 76
3.5.1 Epistasyp. 79
Unit III Evolutionary Electronics
Chapter 4 Evolutionary Computation: A Tool for Computed-Aided Design of electronic Ciruitsp. 91
4.1 Optimization of Analog Vlsi Chipsp. 91
4.1.1 OpAmp Design Optimizationp. 92
4.1.2 Problem Representationp. 93
4.1.3 Genetic Operatorsp. 94
4.1.4 Fitness Evaluation Functionp. 94
4.1.5 Case Studiesp. 95
4.1.5.1 Miller CMOS OTA: GAs Rediscovering Human Designp. 95
4.1.5.2 Low Power Operational Amplifiers: New Design Strategiesp. 98
4.1.5.3 Synthesis of BiCMOS Amplifiersp. 104
4.2 Digital Vlsi Design and Layout Optimizationp. 106
4.2.1 Logic Synthesisp. 107
4.2.2 Technology Mapping and Physical Designp. 109
4.2.3 Testingp. 113
4.3 Summaryp. 116
Chapter 5 Evolutionary Computation: A Tool for Analog Electronic Circuit Synthesisp. 119
5.1 Analog Circuits Evolutionp. 119
5.1.1 Synthesis of Passive Filtersp. 120
5.1.1.1 Passive Filters: Basic Conceptsp. 120
5.1.1.2 Representationp. 122
5.1.1.3 Fitness Evaluationp. 124
5.1.1.4 Case Study: Low Pass Brick-Wall Filterp. 125
5.1.1.5 Other Evolutionary Approachesp. 128
5.1.1.5.1 Genetic Programmingp. 129
5.1.1.5.2 Genetic Algorithm with Developmental Representationp. 136
5.1.2 Synthesis of Active Filtersp. 140
5.1.2.1 Problem Descriptionp. 141
5.1.2.2 Representationp. 142
5.1.2.3 Evaluationp. 142
5.1.2.4 Case Studiesp. 143
5.1.2.4.1 Single Objective Experimentsp. 143
5.1.2.4.2 Multi-Objective Experiments: First Casep. 146
5.1.2.4.3 Multi-Objective Experiments: Second Casep. 149
5.1.3 Synthesis of Operational Amplifiers Based on Bipolar Technologyp. 152
5.1.3.1 Problem Descriptionp. 152
5.1.3.2 Representationp. 153
5.1.3.3 Evaluationp. 153
5.1.3.4 Case Studiesp. 154
5.1.4 Synthesis of a Digital to Analog Converter (DAC)p. 159
Chapter 6 Evolutionary Computation: A Tool for Digital Circuit Synthesisp. 165
6.1 Representationp. 166
6.1.1 Functional Level Representationp. 166
6.1.2 Gate Level Representationp. 171
6.1.3 Transistor Level Representationp. 173
6.2 Fitness Evaluation Functionp. 174
6.3 Case Studiesp. 177
6.3.1 Combinational Circuitsp. 177
6.3.1.1 Multiplexers and Parity Circuitsp. 177
6.3.1.2 Arithmetic Circuitsp. 180
6.3.1.2.1 Sum of Products Representationp. 181
6.3.1.2.2 Use of Reverse Logic and Incremental Evolutionp. 182
6.3.1.2.3 Adders and Multipliersp. 185
6.3.2 Synthesis of Sequential Circuitsp. 188
6.3.3 Transistor Logicp. 190
6.3.4 Digital Filtersp. 194
6.3.4.1 Basic Conceptsp. 195
6.3.4.2 Functional and Gate Level Representationp. 195
6.3.4.3 Functional Level Representation in The Synthesis of Multiplier-Less Filtersp. 196
6.3.4.3.1 Gate Level Representationp. 199
Chapter 7 Evolution of Circuits on Reconfigurable Chipsp. 205
7.1 Programmable Logic Devicesp. 206
7.1.1 Promp. 207
7.1.2 Programmable Logic Array (PLA)p. 208
7.1.3 Programmable Array Logicp. 210
7.1.4 Field Programmable Digital Arrays (FPGAs)p. 211
7.2 Field Programmable Analog Arrays (FPAAs)p. 214
7.2.1 Totally Reconfigurable Analog Hardwarep. 215
7.2.2 Motorolap. 215
7.2.3 Palmo (University of Edinburgh)p. 217
7.2.4 Evolvable Motherboard (University of Sussex)p. 219
7.2.5 Programmable Transistor Array (PTA) (Jet Propulsion Lab)p. 220
7.2.6 Programmable Analog Multiplexer Array (PAMA) (Catholic University of Rio de Janeiro)p. 222
7.2.7 Lattice PACp. 224
7.2.8 Comparative Tablep. 224
7.3 Evolvable Hardwarep. 225
7.3.1 Thompsonp. 225
7.3.1.1 Experimental Setupp. 226
7.3.1.2 Resultsp. 227
7.3.1.3 Analysisp. 230
7.3.2 Stoica et al.p. 232
7.3.3 Zebulum et al. (2000)p. 234
7.3.4 Zebulum et al. (1999)p. 238
7.4 Virtual Computingp. 241
Chapter 8 Advanced Topics of Evolutionary Electronics: Filtering, Control, Antennas, and Fault Tolerancep. 245
8.1 Active Filtersp. 245
8.2 Control Applicationsp. 247
8.2.1 Evolution of Control Circuits Using Genetic Algorithmsp. 247
8.2.1.1 Representationp. 247
8.2.1.2 Evaluationp. 247
8.2.1.3 First Experimentp. 249
8.2.1.4 Lessons Learnedp. 256
8.2.2 Evolution of PID controllers by Means of Genetic Programmingp. 257
8.2.2.1 Representationp. 257
8.2.2.2 Fitness Evaluation Functionp. 259
8.2.2.3 Resultsp. 260
8.2.3 Comparisonp. 260
8.3 Evolution of Antennasp. 261
8.3.1 Overview of Antennasp. 261
8.3.2 Evolution of Antennas Through GAsp. 263
8.3.2.1 Problem Specificationp. 263
8.3.2.2 Representationp. 263
8.3.2.3 Fitness Evaluation Functionp. 263
8.3.3 Evolution of Antennas Through GPp. 264
8.3.3.1 Problem Specificationp. 264
8.3.3.2 Representationp. 264
8.3.3.3 Fitness Evaluation Functionp. 265
8.3.3.4 Resultsp. 265
8.4 Fault Tolerance and Evolutionary Electronicsp. 265
8.4.1 Implicit Fault Tolerancep. 266
8.4.2 Explicit Fault Tolerancep. 268
8.4.3 A Comparison between Implicit and Explicit Fault Tolerance Tech niquesp. 270
8.5 Summaryp. 272
Unit IV Conclusions
Chapter 9 Conclusionsp. 275
9.1 Evolutionary and Conventional Designp. 275
9.2 Programmable Circuitsp. 275
9.3 Consequences on Analog and Digital Electronicsp. 277
9.4 Fault Tolerant Systemsp. 278
Appendix A Mos Transistorsp. 281
Appendix B Switched Capacitor (SC) Circuitsp. 285
Appendix C Gm-C Filtersp. 287
Appendix D An Introduction to Nano Electronicsp. 289
Indexp. 295
Go to:Top of Page