Skip to:Content
|
Bottom
Cover image for Hybrid materials : synthesis, characterization, and applications
Title:
Hybrid materials : synthesis, characterization, and applications
Publication Information:
Weinheim, Germany : Wiley-VCH, 2007
Physical Description:
xvii, 498 p. : ill. ; 25 cm.
ISBN:
9783527312993
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010185841 TA418.9.C6 H95 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Hybrid materials have currently a great impact on numerous future developments including nanotechnology. This book presents an overview about the different types of materials, clearly structured into synthesis, characterization and applications. A perfect starting point for everyone interested in the field, but also for the specialist as a source of high quality information.


Author Notes

Guido Kickelbick is professor at the Institute of Materials Chemistry of the Vienna University of Technology, Austria. Born in Hamm, he studied chemistry at the University of Würzburg, Germany, gaining his PhD in 1997 under Ulrich Schubert on sol-gel derived surface-modified metal oxo clusters. He was subsequently awarded a post-doctoral fellowship with Krzysztof Matyjaszewski at the Center for Macromolecular Engineering at the Carnegie Mellon University in Pittsburgh, USA, on the application of controlled radical polymerization in the formation of hybrid materials. In 1998 he returned to the Vienna University of Technology where he has since worked in the field of hybrid materials and nanocomposites, as well as surface-functionalized nanoparticles with a particular focus on the combination of organic polymers with inorganic components. Professor Kickelbick has published more than 150 papers on different aspects of inorganic, polymer and materials chemistry.


Table of Contents

Guido KickelbickWalter CaseriElodie Bourgeat-LamiJin Zhu and Charles A. WilkieNicola HusingDouglas A. LoyHeather A. Currie and Siddharth V. Patwardhan and Carole C. Perry and Paul Roach and Neil J. ShirtcliffeKanji Tsuru and Satoshi Hayakawa and Akiyoshi OsakaLuis Antonio Dias Carlos and R.A. Sa Ferreira and V. de Zea BermudezJason E. RitchieMark D. Soucek
1 Introduction to Hybrid Materialsp. 1
1.1 Introductionp. 1
1.1.1 Natural Originsp. 1
1.1.2 The Development of Hybrid Materialsp. 2
1.1.3 Definition: Hybrid Materials and Nanocompositesp. 3
1.1.4 Advantages of Combining Inorganic and Organic Species in One Materialp. 7
1.1.5 Interface-determined Materialsp. 10
1.1.6 The Role of the Interaction Mechanismsp. 11
1.2 Synthetic Strategies towards Hybrid Materialsp. 12
1.2.1 In situ Formation of Inorganic Materialsp. 13
1.2.1.1 Sol-Gel Processp. 14
1.2.1.2 Nonhydrolytic Sol-Gel Processp. 16
1.2.1.3 Sol-Gel Reactions of Non-Silicatesp. 16
1.2.1.4 Hybrid Materials by the Sol-Gel Processp. 17
1.2.1.5 Hybrid Materials Derived by Combining the Sol-Gel Approach and Organic Polymersp. 19
1.2.2 Formation of Organic Polymers in Presence of Preformed Inorganic Materialsp. 20
1.2.3 Hybrid Materials by Simultaneous Formation of Both Componentsp. 22
1.2.4 Building Block Approachp. 23
1.2.4.1 Inorganic Building Blocksp. 24
1.2.4.2 Organic Building Blocksp. 32
1.3 Structural Engineeringp. 35
1.4 Properties and Applicationsp. 39
1.5 Characterization of Materialsp. 41
1.6 Summaryp. 46
2 Nanocomposites of Polymers and Inorganic Particlesp. 49
2.1 Introductionp. 49
2.2 Consequences of Very Small Particle Sizesp. 53
2.3 Historical Reports on Inorganic Nanoparticles and Polymer Nanocompositesp. 63
2.4 Preparation of Polymer Nanocompositesp. 65
2.4.1 Mixing of Dispersed Particles with Polymers in Liquidp. 67
2.4.2 Mixing of Particles with Monomers Followed by Polymerizationp. 71
2.4.3 Nanocomposite Formation by means of Molten or Solid Polymersp. 73
2.4.4 Concomitant Formation of Particles and Polymersp. 74
2.5 Properties and Applications of Polymer Nanocompositesp. 75
2.5.1 Propertiesp. 75
2.5.2 Applicationsp. 78
2.5.2.1 Catalystsp. 78
2.5.2.2 Gas Sensorsp. 79
2.5.2.3 Materials with Improved Flame Retardancep. 80
2.5.2.4 Optical Filtersp. 80
2.5.2.5 Dichroic Materialsp. 81
2.5.2.6 High and Low Refractive Index Materialsp. 81
2.6 Summaryp. 83
3 Hybrid Organic/Inorganic Particlesp. 87
3.1 Introductionp. 87
3.2 Methods for creating Particlesp. 92
3.2.1 Polymer Particlesp. 92
3.2.1.1 Oil-in-water Suspension Polymerizationp. 92
3.2.1.2 Precipitation and Dispersion Polymerizationsp. 93
3.2.1.3 Oil-in-water Emulsion Polymerizationp. 94
3.2.1.4 Oil-in-water Miniemulsion Polymerizationp. 95
3.2.1.5 Oil-in-water Microemulsion Polymerizationp. 95
3.2.2 Vesicles, Assemblies and Dendrimersp. 95
3.2.2.1 Vesiclesp. 95
3.2.2.2 Block Copolymer Assembliesp. 96
3.2.2.3 Dendrimersp. 97
3.2.3 Inorganic Particlesp. 98
3.2.3.1 Metal Oxide Particlesp. 98
3.2.3.2 Metallic Particlesp. 99
3.2.3.3 Semiconductor Nanoparticlesp. 101
3.2.3.4 Synthesis in Microemulsionp. 102
3.3 Hybrid Nanoparticles Obtained Through Self-assembly Techniquesp. 103
3.3.1 Electrostatically Driven Self-assemblyp. 103
3.3.1.1 Heterocoagulationp. 103
3.3.1.2 Layer-by-layer Assemblyp. 107
3.3.2 Molecular Recognition Assemblyp. 109
3.4 O/I Nanoparticles Obtained by in situ Polymerization Techniquesp. 111
3.4.1 Polymerizations Performed in the Presence of Preformed Mineral Particlesp. 111
3.4.1.1 Surface Modification of Inorganic Particlesp. 112
3.4.1.2 Polymerizations in Multiphase Systemsp. 113
3.4.1.3 Surface-initiated Polymerizationsp. 124
3.4.2 In situ Formation of Minerals in the Presence of Polymer Colloidsp. 130
3.4.2.1 Polymer Particles Templatingp. 130
3.4.2.2 Block Copolymers, Dendrimers and Microgels Templatingp. 134
3.5 Hybrid Particles Obtained by Simultaneously Reacting Organic Monomers and Mineral Precursorsp. 137
3.5.1 Poly(organosiloxane/vinylic) Copolymer Hybridsp. 137
3.5.2 Polyorganosiloxane Colloidsp. 140
3.6 Conclusionp. 142
4 Intercalation Compounds and Clay Nanocompositesp. 151
4.1 Introductionp. 151
4.2 Polymer Lamellar Material Nanocompositesp. 153
4.2.1 Types of Lamellar Nano-additivesp. 153
4.2.2 Montmorillonite Layer Structurep. 154
4.2.3 Modification of Clayp. 154
4.3 Nanostructures and Characterizationp. 156
4.3.1 X-ray Diffraction and Transmission Electron Microscopy to Probe Morphologyp. 156
4.3.2 Other Techniques to Probe Morphologyp. 158
4.4 Preparation of Polymer-clay Nanocompositesp. 160
4.4.1 Solution Mixingp. 161
4.4.2 Polymerizationp. 161
4.4.3 Melt Compoundingp. 163
4.5 Polymer-graphite and Polymer Layered Double Hydroxide Nanocompositesp. 164
4.5.1 Nanocomposites Based on Layered Double Hydroxides and Saltsp. 166
4.6 Properties of Polymer Nanocompositesp. 167
4.7 Potential Applicationsp. 168
4.8 Conclusion and Prospects for the Futurep. 169
5 Porous Hybrid Materialsp. 175
5.1 General Introduction and Historical Developmentp. 175
5.1.1 Definition of Termsp. 177
5.1.2 Porous (Hybrid) Matricesp. 179
5.1.2.1 Microporous Materials: Zeolitesp. 180
5.1.2.2 Mesoporous Materials: M41S and FSM Materialsp. 182
5.1.2.3 Metal-Organic Frameworks (MOFs)p. 184
5.2 General Routes towards Hybrid Materialsp. 185
5.2.1 Post-synthesis Modification of the Final Dried Porous Product by Gaseous, Liquid or Dissolved Organic or Organometallic Speciesp. 185
5.2.2 Liquid-phase Modification in the Wet Nanocomposite Stage or - for Mesostructured Materials and Zeolites - Prior to Removal of the Templatep. 787
5.2.3 Addition of Molecular, but Nonreactive Compounds to the Precursor Solutionp. 188
5.2.4 Co-condensation Reactions by the use of Organically-substituted Co-precursorsp. 188
5.2.5 The Organic Entity as an Integral Part of the Porous Frameworkp. 190
5.3 Classification of Porous Hybrid Materials by the Type of Interactionp. 192
5.3.1 Incorporation of Organic Functions Without Covalent Attachment to the Porous Hostp. 192
5.3.1.1 Doping with Small Moleculesp. 192
5.3.1.2 Doping with Polymeric Speciesp. 196
5.3.1.3 Incorporation of Biomoleculesp. 199
5.3.2 Incorporation of Organic Functions with Covalent Attachment to the Porous Hostp. 201
5.3.2.1 Grafting Reactionsp. 201
5.3.2.2 Co-condensation Reactionsp. 203
5.3.3 The Organic Function as an Integral Part of the Porous Network Structurep. 209
5.3.3.1 ZOL and PMO: Zeolites with Organic Groups as Lattice and Periodically Mesostructured Organosilicasp. 209
5.3.3.2 Metal-Organic Frameworksp. 213
5.4 Applications and Properties of Porous Hybrid Materialsp. 219
6 Sol-Gel Processing of Hybrid Organic-Inorganic Materials Based on Polysilsesquioxanesp. 225
6.1 Introductionp. 225
6.1.1 Definition of Termsp. 226
6.2 Forming Polysilsesquioxanesp. 228
6.2.1 Hydrolysis and Condensation Chemistryp. 228
6.2.2 Alternative Polymerization Chemistriesp. 234
6.2.3 Characterizing Silsesquioxane Sol-Gels with NMRp. 235
6.2.4 Cyclization in Polysilsesquioxanesp. 237
6.3 Type I Structures: Polyhedral Oligosilsesquioxanes (POSS)p. 240
6.3.1 Homogenously Functionalized POSSp. 240
6.3.2 Stability of Siloxane Bonds in Silsesquioxanesp. 242
6.4 Type II Structures: Amorphous Oligo- and Polysilsesquioxanesp. 243
6.4.1 Gelation of Polysilsesquioxanesp. 243
6.4.2 Effects of pH on Gelationp. 245
6.4.3 Polysilsesquioxane Gelsp. 246
6.4.4 Polysilsesquioxane-Silica Copolymersp. 247
6.5 Type III: Bridged Polysilsesquioxanesp. 248
6.5.1 Molecular Bridgesp. 248
6.5.2 Macromolecule-bridged Polysilsesquioxanesp. 252
6.6 Summaryp. 252
6.6.1 Properties of Polysilsesquioxanesp. 253
6.6.2 Existing and Potential Applicationsp. 253
7 Natural and Artificial Hybrid Biomaterialsp. 255
7.1 Introductionp. 255
7.2 Building Blocksp. 256
7.2.1 Inorganic Building Blocksp. 256
7.2.1.1 Nucleation and Growthp. 259
7.2.2 Organic Building Blocksp. 262
7.2.2.1 Proteins and DNAp. 262
7.2.2.2 Carbohydratesp. 264
7.2.2.3 Lipidsp. 266
7.2.2.4 Collagenp. 266
7.3 Biomineralizationp. 269
7.3.1 Introductionp. 269
7.3.1.1 Biomineral Types and Occurrencep. 269
7.3.1.2 Functions of Biomineralsp. 270
7.3.1.3 Properties of Biomineralsp. 270
7.3.2 Control Strategies in Biomineralizationp. 272
7.3.3 The Role of the Organic Phase in Biomineralizationp. 275
7.3.4 Mineral or Precursor - Organic Phase Interactionsp. 276
7.3.5 Examples of Non-bonded Interactions in Bioinspired Silicificationp. 279
7.3.5.1 Effect of Electrostatic Interactionsp. 279
7.3.5.2 Effect of Hydrogen Bonding Interactionsp. 279
7.3.5.3 Effect of the Hydrophobic Effectp. 280
7.3.6 Roles of the Organic Phase in Biomineralizationp. 280
7.4 Bioinspired Hybrid Materialsp. 281
7.4.1 Natural Hybrid Materialsp. 283
7.4.1.1 Bonep. 283
7.4.1.2 Dentinp. 285
7.4.1.3 Nacrep. 287
7.4.1.4 Woodp. 287
7.4.2 Artificial Hybrid Biomaterialsp. 289
7.4.2.1 Ancient materialsp. 289
7.4.2.2 Structural Materialsp. 290
7.4.2.3 Non-structural Materialsp. 290
7.4.3 Construction of Artificial Hybrid Biomaterialsp. 291
7.4.3.1 Organic Templates to Dictate Shape and Formp. 291
7.4.3.2 Integrated Nanoparticle-Biomolecule Hybrid Systemsp. 292
7.4.3.3 Routes to Bio-nano Hybrid Systemsp. 292
7.5 Responsesp. 294
7.5.1 Biological Performancep. 294
7.5.2 Protein Adsorptionp. 295
7.5.3 Cell Adhesionp. 295
7.5.4 Evaluation of Biomaterialsp. 296
7.6 Summaryp. 298
8 Medical Applications of Hybrid Materialsp. 301
8.1 Introductionp. 301
8.1.1 Composites, Solutions, and Hybridsp. 301
8.1.2 Artificial Materials for Repairing Damaged Tissues and Organsp. 306
8.1.3 Tissue-Material Interactionsp. 310
8.1.4 Material-Tissue Bonding; Bioactivityp. 313
8.1.5 Blood-compatible Materialsp. 318
8.2 Bioactive Inorganic-Organic Hybridsp. 319
8.2.1 Concepts of Designing Hybridsp. 319
8.2.2 Concepts of Organic-Inorganic Hybrid Scaffolds and Membranesp. 321
8.2.3 PDMS-Silica Hybridsp. 323
8.2.4 Organoalkoxysilane Hybridsp. 324
8.2.5 Gelatin-Silicate Hybridsp. 326
8.2.6 Chitosan-Silicate Hybridsp. 327
8.3 Surface Modifications for Biocompatible Materialsp. 328
8.3.1 Molecular Brush Structure Developed on Biocompatible Materialsp. 328
8.3.2 Alginic Acid Molecular Brush Layers on Metal Implantsp. 329
8.3.3 Organotitanium Molecular Layers with Blood Compatibilityp. 330
8.4 Porous Hybrids for Tissue Engineering Scaffolds and Bioreactorsp. 331
8.4.1 PDMS-Silica Porous Hybrids for Bioreactorsp. 331
8.4.2 Gelatin-Silicate Porous Hybridsp. 332
8.4.3 Chitosan-Silicate Porous Hybrids for Scaffold Applicationsp. 333
8.5 Chitosan-based Hybrids for Drug Delivery Systemsp. 334
8.6 Summaryp. 335
9 Hybrid Materials for Optical Applicationsp. 337
9.1 Introductionp. 337
9.2 Synthesis Strategy for Optical Applicationsp. 339
9.3 Hybrids for Coatingsp. 343
9.4 Hybrids for Light-emitting and Electro-optic Purposesp. 353
9.4.1 Photoluminescence and Absorptionp. 353
9.4.2 Electroluminescencep. 359
9.4.3 Quantifying Luminescencep. 365
9.4.3.1 Color Coordinates, Hue, Dominant Wavelength and Purityp. 365
9.4.3.2 Emission Quantum Yield and Radiancep. 368
9.4.4 Recombination Mechanisms and Nature of the Emitting Centersp. 372
9.4.5 Lanthanide-doped Hybridsp. 374
9.4.6 Solid-state Dye-lasersp. 379
9.5 Hybrids for Photochromic and Photovoltaic Devicesp. 381
9.6 Hybrids for Integrated and Nonlinear Opticsp. 387
9.6.1 Planar Waveguides and Direct Writingp. 387
9.6.2 Nonlinear Opticsp. 393
9.7 Summaryp. 398
10 Electronic and Electrochemical Applications of Hybrid Materialsp. 401
10.1 Introductionp. 401
10.2 Historical Backgroundp. 402
10.3 Fundamental Mechanisms of Conductivity in Hybrid Materialsp. 403
10.3.1 Electrical Conductivityp. 403
10.3.2 Li- Conductivityp. 407
10.3.3 H Conductivityp. 409
10.4 Explanation of the Different Materialsp. 411
10.4.1 Sol-Gel Based Systemsp. 411
10.4.2 Nanocompositesp. 412
10.4.3 Preparation of Electrochemically Active Films (and Chemically Modified Electrodes)p. 414
10.5 Special Analytical Techniquesp. 415
10.5.1 Electrochemical Techniquesp. 415
10.5.2 Pulsed Field Gradient NMRp. 418
10.6 Applicationsp. 419
10.6.1 Electrochemical Sensorsp. 419
10.6.2 Optoelectronic Applicationsp. 421
10.6.3 H-conducting Electrolytes for Fuel Cell Applicationsp. 423
10.6.4 Li-conducting Electrolytes for Battery Applicationsp. 426
10.6.5 Other Ion Conducting Systemsp. 429
10.7 Summaryp. 430
11 Inorganic/Organic Hybrid Coatingsp. 433
11.1 General Introduction to Commodity Organic Coatingsp. 433
11.2 General Formation of Inorganic/Organic Hybrid Coatingsp. 435
11.2.1 Acid and Base Catalysis within an Organic Matrixp. 436
11.2.2 Thermally Cured Inorganic/Organic Seed Oils Coatingsp. 443
11.2.3 Drying Oil Auto-oxidation Mechanismp. 444
11.2.4 Metal Catalystsp. 445
11.3 Alkyds and Other Polyester Coatingsp. 449
11.3.1 Inorganic/Organic Alkyd Coatingsp. 450
11.4 Polyurethane and Polyurea Coatingsp. 451
11.4.1 Polyurea Inorganic/Organic Hybrid Coatingsp. 452
11.4.2 Polyurethane/Polysiloxane Inorganic/Organic Coating Systemp. 455
11.5 Radiation Curable Coatingsp. 459
11.5.1 UV-curable Inorganic/Organic Hybrid Coatingsp. 461
11.5.2 Models for Inorganic/Organic Hybrid Coatingsp. 465
11.5.3 Film Morphologyp. 468
11.6 Applicationsp. 470
11.7 Summaryp. 471
Indexp. 477
Go to:Top of Page