Skip to:Content
|
Bottom
Cover image for Microfluidics for biological applications
Title:
Microfluidics for biological applications
Publication Information:
New York, NY : Springer, 2008
Physical Description:
xix, 416 p. : ill. ; 24 cm.
ISBN:
9780387094793

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010199912 TJ853 M525 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Microfluidics for Biological Applications provides researchers and scientists in the biotechnology, pharmaceutical, and life science industries with an introduction to the basics of microfluidics and also discusses how to link these technologies to various biological applications at the industrial and academic level. Readers will gain insight into a wide variety of biological applications for microfluidics.

The material presented here is divided into four parts, Part I gives perspective on the history and development of microfluidic technologies, Part II presents overviews on how microfluidic systems have been used to study and manipulate specific classes of components, Part III focuses on specific biological applications of microfluidics: biodefense, diagnostics, high throughput screening, and tissue engineering and finally Part IV concludes with a discussion of emerging trends in the microfluidics field and the current challenges to the growth and continuing success of the field.


Table of Contents

Chapter 1 Introduction to Microfluidicsp. 1
Abstractp. 1
1.1 Introduction to Microfluidicsp. 2
1.2 History of Microfluidicsp. 3
1.2.1 The beginning: Gas chromatography and capillary electrophoresisp. 3
1.2.2 The microfluidic advantagep. 5
1.2.3 Modular separation, reaction and hybridization systemsp. 7
1.2.4 Integrated systemsp. 8
1.3 Fluidics and Transport Fundamentalsp. 10
1.3.1 The continuum approximationp. 10
1.3.2 Laminar flowp. 10
1.3.3 Diffusion in microfluidic systemsp. 12
1.3.4 Surface forces and dropletsp. 14
1.3.5 Pumps and valvesp. 16
1.3.6 Electrokineticsp. 16
1.3.7 Thermal managementp. 18
1.4 Device Fabricationp. 18
1.4.1 Materialsp. 19
1.4.2 Fabrication and assemblyp. 20
1.5 Biological Applicationsp. 21
1.5.1 Genetic analysis (DNA/RNA)p. 22
1.5.2 Proteomicsp. 22
1.5.3 Cellular assaysp. 23
1.5.4 Drug delivery and compatibilityp. 24
1.6 The Futurep. 26
1.6.1 Potential demand/market for microfluidic devicesp. 26
1.6.2 Current productsp. 27
1.6.3 Challenges and the futurep. 28
Referencesp. 29
Chapter 2 Materials and Microfabrication Processes for Microfluidic Devicesp. 35
Abstractp. 35
2.1 Introductionp. 36
2.2 Silicon Based Materialsp. 37
2.2.1 Micromachining of siliconp. 39
2.2.2 Bulk micromachiningp. 39
2.2.3 Surface micromachiningp. 46
2.3 Glass Based Materialsp. 49
2.3.1 Microfabrication in glassp. 51
2.4 Wafer Bondingp. 56
2.4.1 Fusion bondingp. 57
2.4.2 Anodic bondingp. 57
2.4.3 Adhesive bondingp. 58
2.5 Polymersp. 59
2.5.1 Microfabricationp. 59
2.5.2 Polymer materialsp. 64
2.6 Conclusionp. 82
Referencesp. 82
Chapter 3 Interfacing Microfluidic Devices with the Macro Worldp. 93
Abstractp. 93
3.1 Introductionp. 94
3.2 Typical Requirements for Microfluidic Interfacesp. 94
3.3 Review of Microfluidic Interfacesp. 95
3.3.1 World-to-chip interfacesp. 95
3.3.2 Chip-to-world interfacesp. 103
3.4 Future Perspectivesp. 112
Referencesp. 113
Chapter 4 Genetic Analysis in Miniaturized Electrophoresis Systemsp. 117
Abstractp. 117
4.1 Introductionp. 118
4.1.1 Status of genetic analysesp. 118
4.1.2 Genetic analysis by miniaturized electrophoresis systemp. 119
4.2 Microchip Electrophoresis for Genomic Analysisp. 122
4.2.1 Material and fabrication of electrophoresis microchipsp. 123
4.2.2 Theory of gel electrophoresis of DNAp. 125
4.2.3 Gel matricesp. 126
4.2.4 Novel DNA separation strategies on microchipsp. 130
4.2.5 Surface coating methods for microchannel wallsp. 134
4.3 Parallelization in Microchip Electrophoresisp. 137
4.4 Integration in Microchip Electrophoresis for Genetic Analysisp. 139
4.4.1 Sample preparation on microchipp. 139
4.4.2 System integrationp. 141
4.5 Commercial Microfluidic Instruments for Genetic Analysesp. 144
4.5.1 Commercial microchip electrophoresis instruments for genetic analysisp. 145
4.5.2 Integrated microfluidic instruments for genetic analysesp. 147
4.6 Microfluidic Markets and Future Perspectivesp. 150
Referencesp. 151
Chapter 5 Microfluidic Systems for Protein Separationsp. 165
Abstractp. 165
5.1 Introductionp. 166
5.1.1 Advantages of microfluidic chips for protein separationsp. 166
5.1.2 Limitations of microfluidic chips in proteomics applicationsp. 167
5.1.3 Substrates used for proteomic analysisp. 167
5.2 Microfluidic Chips for Protein Separationp. 168
5.2.1 Microchip-based electrophoretic techniquesp. 169
5.2.2 Microchip chromatographyp. 172
5.3 Integrated Analysis in Microchipsp. 175
5.3.1 Integration of sample preparation with analysisp. 175
5.3.2 Multi-dimensional separation in microchipsp. 177
5.3.3 Chips integrated with mass spectrometryp. 180
5.4 Future Directionsp. 180
Referencesp. 181
Chapter 6 Microfluidic Systems for Cellular Applicationsp. 185
Abstractp. 185
6.1 Introductionp. 186
6.1.1 Physiological advantagesp. 188
6.1.2 Biological advantagesp. 189
6.1.3 Economical advantagesp. 191
6.2 Microfluidic Technology for Cellular Applicationsp. 191
6.2.1 Microfluidic cell isolation/separationp. 191
6.2.2 Microfluidic cell culturep. 200
6.2.3 Microfluidic cell analysisp. 208
6.3 Commercialization of Microfluidic Technologyp. 211
6.4 Concluding Remarksp. 214
Referencesp. 215
Chapter 7 Microfluidic Systems for Engineering Vascularized Tissue Constructsp. 223
Abstractp. 224
7.1 Introductionp. 224
7.2 Generating 2D Vascularized Tissue Constructs Using Microfluidic Systemsp. 226
7.3 Generating 3D Vascularized Tissue Constructs Using Microfluidic Systemsp. 230
7.4 Hydrogel-based Microfluidic Systems for Generating Vascularized Tissue Constructsp. 232
7.5 Mathematical Modeling to Optimize the Microfluidic Systems for Generating Vascularized Tissue Constructsp. 235
7.6 Future Challengesp. 237
7.7 Conclusionsp. 237
Referencesp. 237
Chapter 8 High Throughput Screening Using Microfluidicsp. 241
Abstractp. 241
8.1 Introductionp. 242
8.2 Cell-Based Assaysp. 244
8.2.1 High throughput cell culturep. 245
8.2.2 Cell sorting for high throughput applicationsp. 252
8.3 Biochemical Assaysp. 254
8.3.1 PCRp. 254
8.3.2 Electrophoresisp. 255
8.3.3 Othersp. 255
8.4 Drug Screening Applicationsp. 258
8.5 Users and Developers of [mu]F HTS Platformsp. 259
8.5.1 Users: Research labs, academic screening facilities, and pharmaceuticalp. 260
8.5.2 Commercialized products in HTSp. 261
8.6 Conclusionp. 262
8.7 Acknowledgementsp. 263
Referencesp. 263
Chapter 9 Microfluidic Diagnostic Systems for the Rapid Detection and Quantification of Pathogensp. 271
Abstractp. 271
9.1 Introductionp. 272
9.1.1 Infectious pathogens and their prevalencep. 272
9.1.2 Traditional pathogen detection methodsp. 274
9.1.3 Microfluidic techniquesp. 276
9.2 Review of Researchp. 277
9.2.1 Pathogen detection/quantification techniques based on detecting whole cellsp. 277
9.2.2 Pathogen detection/quantification techniques based on detecting metabolites released or consumedp. 294
9.2.3 Pathogen detection/quantification through microfluidic immunoassays and nucleic acid based detection platformsp. 297
9.3 Future Research Directionsp. 305
Referencesp. 307
Chapter 10 Microfluidic Applications in Biodefensep. 323
Abstractp. 323
10.1 Introductionp. 324
10.2 Biodefense Monitoringp. 326
10.2.1 Civilian biodefensep. 326
10.2.2 Military biodefensep. 328
10.3 Current Biodefense Detection and Identification Methodsp. 330
10.3.1 Laboratory detectionp. 331
10.3.2 Field detectionp. 332
10.4 Microfluidic Challenges for Advanced Biodefense Detection and Identification Methodsp. 333
10.5 Microscale Sample Preparation Methodsp. 335
10.5.1 Spore disruptionp. 336
10.5.2 Pre-separationsp. 336
10.5.3 Nucleic acid purificationsp. 337
10.6 Immunomagnetic Separations and Immunoassaysp. 339
10.6.1 Immunomagnetic separationsp. 340
10.6.2 Immunoassaysp. 341
10.7 Proteomic Approachesp. 345
10.8 Nucleic Acid Amplification and Detection Methodsp. 346
10.8.1 PCR and qPCR detection of pathogens for biodefensep. 347
10.8.2 Miniaturized and Microfluidic PCRp. 348
10.8.3 Heating and cooling approachesp. 349
10.8.4 Miniaturized PCR and qPCR for biodefensep. 350
10.8.5 Other Nucleic acid amplification methodsp. 351
10.9 Microarraysp. 352
10.9.1 Microarrays and microfluidicsp. 353
10.10 Microelectrophoresis and Biodefensep. 354
10.10.1 Microelectrophoresis technologiesp. 356
10.11 Integrated lab-on-a-chip systems and biodefensep. 358
10.11.1 Full microfluidic integration for biodefensep. 363
10.12 Summary and Perspectivesp. 363
Referencesp. 365
Chapter 11 Current and Future Trends in Microfluidics within Biotechnology Researchp. 385
Abstractp. 385
11.1 The Past - Exciting Prospectsp. 386
11.2 The Present - Kaleidoscope-like Trendsp. 388
11.2.1 Droplet microfluidicsp. 389
11.2.2 Integrating Active Components in Microfluidicsp. 391
11.2.3 Third world - paper microfluidics - George Whitesidesp. 394
11.2.4 Microfluidic solutions for enhancing existing biotechnology platformsp. 395
11.2.5 Microfluidics for cell biology - seeing inside the cell with molecular probesp. 400
11.2.6 Microfluidics for cell biology - high throughput platformsp. 401
11.3 The Future - Seamless and Ubiquitous MicroTASp. 403
Referencesp. 405
Indexp. 413
Go to:Top of Page