Skip to:Content
|
Bottom
Cover image for Stability and wave motion in porous media
Title:
Stability and wave motion in porous media
Personal Author:
Publication Information:
New York, NY : Springer, 2008
Physical Description:
xiv, 437 p. : ill. ; 25 cm.
ISBN:
9780387765419

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010198473 QC173.4.P67 S77 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

This book presents an account of theories of ?ow in porous media which have proved tractable to analysis and computation. In particular, the t- ories of Darcy, Brinkman, and Forchheimer are presented and analysed in detail. In addition, we study the theory of voids in an elastic material due to J. Nunziato and S. Cowin. The range of validity of each theory is outlined and the mathematical properties are considered. The questions of structural stability, where the stability of the model itself is under cons- eration, and spatial stability are investigated. We believe this is the ?rst such account of these topics in book form. Throughout, we include several new results not published elsewhere. Temporal stability studies of a variety of problems are included, indic- ingpracticalapplicationsofeach.Bothlinearinstabilityanalysisandglobal nonlinear stability thresholds are presented where possible. The mundane, importantproblemofstabilityof?owinasituationwhereaporousmedium adjoins a clear ?uid is also investigated in some detail. In particular, the chapter dealing with this problem contains some new material only p- lished here. Since stability properties inevitably end up requiring to solve a multi-parameter eigenvalue problem by computational means, a separate chapter is devoted to this topic. Contemporary methods for solving such eigenvalue problems are presented in some detail.


Table of Contents

Prefacep. vii
1 Introductionp. 1
1.1 Porous mediap. 1
1.1.1 Applications, examplesp. 1
1.1.2 Notation, definitionsp. 6
1.1.3 Overviewp. 9
1.2 The Darcy modelp. 10
1.2.1 The Porous Medium Equationp. 11
1.3 The Forchheimer modelp. 12
1.4 The Brinkman modelp. 12
1.5 Anisotropic Darcy modelp. 13
1.6 Equations for other fieldsp. 14
1.6.1 Temperaturep. 14
1.6.2 Salt fieldp. 15
1.7 Boundary conditionsp. 15
1.8 Elastic materials with voidsp. 16
1.8.1 Nunziato-Cowin theoryp. 16
1.8.2 Microstretch theoryp. 17
1.9 Mixture theoriesp. 18
1.9.1 Eringen's theoryp. 18
1.9.2 Bowen's theoryp. 22
2 Structural Stabilityp. 27
2.1 Structural stability, Darcy modelp. 27
2.1.1 Newton's law of coolingp. 28
2.1.2 A priori bound for Tp. 30
2.2 Structural stability, Forchheimer modelp. 31
2.2.1 Continuous dependence on bp. 32
2.2.2 Continuous dependence on cp. 34
2.2.3 Energy boundsp. 35
2.2.4 Brinkman-Forchheimer modelp. 37
2.3 Forchheimer model, non-zero boundary conditionsp. 37
2.3.1 A maximum principle for cp. 39
2.3.2 Continuous dependence on the viscosityp. 39
2.4 Brinkman model, non-zero boundary conditionsp. 42
2.5 Convergence, non-zero boundary conditionsp. 43
2.6 Continuous dependence, Vadasz coefficientp. 44
2.6.1 A maximum principle for Tp. 45
2.6.2 Continuous dependence on [alpha]p. 46
2.7 Continuous dependence, Krishnamurti coefficientp. 48
2.7.1 An a priori bound for Tp. 49
2.7.2 Continuous dependencep. 53
2.8 Continuous dependence, Dufour coefficientp. 55
2.8.1 Continuous dependence on [gamma]p. 57
2.9 Initial - final value problemsp. 69
2.10 The interface problemp. 72
2.11 Lower bounds on the blow-up timep. 76
2.12 Uniqueness in compressible porous flowsp. 82
3 Spatial Decayp. 95
3.1 Spatial decay for the Darcy equationsp. 95
3.1.1 Nonlinear temperature dependent densityp. 96
3.1.2 An appropriate "energy" functionp. 98
3.1.3 A data bound for E(0, t)p. 104
3.2 Spatial decay for the Brinkman equationsp. 111
3.2.1 An estimate for grad Tp. 112
3.2.2 An estimate for grad up. 114
3.3 Spatial decay for the Forchheimer equationsp. 120
3.3.1 An estimate for grad Tp. 125
3.3.2 An estimate for E(0, t)p. 127
3.3.3 An estimate for u[subscript i]u[subscript i]p. 129
3.3.4 Bounding [Phi subscript i]p. 131
3.4 Spatial decay for a Krishnamurti modelp. 132
3.4.1 Estimates for T,[subscript i]T,[subscript i] and C,[subscript i]C,[subscript i]p. 134
3.4.2 An estimate for the u[subscript i]u[subscript i] termp. 136
3.4.3 Integration of the H inequalityp. 138
3.4.4 A bound for H(0)p. 138
3.4.5 Bound for u[subscript i]u[subscript i] at z = 0p. 141
3.5 Spatial decay for a fluid-porous modelp. 142
4 Convection in Porous Mediap. 147
4.1 Equations for thermal convection in a porous mediump. 148
4.1.1 The Darcy equationsp. 148
4.1.2 The Forchheimer equationsp. 148
4.1.3 Darcy equations with anisotropic permeabilityp. 149
4.1.4 The Brinkman equationsp. 150
4.2 Stability of thermal convectionp. 150
4.2.1 The Benard problem for the Darcy equationsp. 151
4.2.2 Linear instabilityp. 152
4.2.3 Nonlinear stabilityp. 154
4.2.4 Variational solution to (4.28)p. 155
4.2.5 Benard problem for the Forchheimer equationsp. 158
4.2.6 Darcy equations with anisotropic permeabilityp. 159
4.2.7 Benard problem for the Brinkman equationsp. 163
4.3 Stability and symmetryp. 166
4.3.1 Symmetric operatorsp. 166
4.3.2 Heated and salted belowp. 168
4.3.3 Symmetrizationp. 170
4.3.4 Pointwise constraintp. 171
4.4 Thermal non-equilibriump. 172
4.4.1 Thermal non-equilibrium modelp. 172
4.4.2 Stability analysisp. 174
4.5 Resonant penetrative convectionp. 177
4.5.1 Nonlinear density, heat source modelp. 177
4.5.2 Basic equationsp. 178
4.5.3 Linear instability analysisp. 180
4.5.4 Nonlinear stability analysisp. 181
4.5.5 Behaviour observedp. 182
4.6 Throughflowp. 183
4.6.1 Penetrative convection with throughflowp. 183
4.6.2 Forchheimer model with throughflowp. 184
4.6.3 Global nonlinear stability analysisp. 186
5 Stability of Other Porous Flowsp. 193
5.1 Convection and flow with micro effectsp. 193
5.1.1 Biological processesp. 193
5.1.2 Glia aggregation in the brainp. 194
5.1.3 Micropolar thermal convectionp. 196
5.2 Porous flows with viscoelastic effectsp. 198
5.2.1 Viscoelastic porous convectionp. 198
5.2.2 Second grade fluidsp. 200
5.2.3 Generalized second grade fluidsp. 201
5.3 Storage of gasesp. 202
5.3.1 Carbon dioxide storagep. 202
5.3.2 Hydrogen storagep. 204
5.4 Energy growthp. 205
5.4.1 Soil salinizationp. 205
5.4.2 Other salinization theoriesp. 208
5.4.3 Time growth of parallel flowsp. 210
5.4.4 Stability analysis for salinizationp. 218
5.4.5 Transient growth in salinizationp. 220
5.5 Turbulent convectionp. 222
5.5.1 Turbulence in porous mediap. 222
5.5.2 The background methodp. 223
5.5.3 Selecting [tau]p. 225
5.6 Multiphase flowp. 227
5.6.1 Water-steam motionp. 227
5.6.2 Foodstuffs, emulsionsp. 230
5.7 Unsaturated porous mediump. 231
5.7.1 Model equationsp. 231
5.7.2 Stability of flowp. 232
5.7.3 Transient growthp. 233
5.8 Parallel flowsp. 234
5.8.1 Poiseuille flowp. 234
5.8.2 Flow in a permeable conduitp. 236
6 Fluid - Porous Interface Problemsp. 239
6.1 Models for thermal convectionp. 239
6.1.1 Extended Navier-Stokes modelp. 240
6.1.2 Nield (Darcy) modelp. 241
6.1.3 Forchheimer modelp. 243
6.1.4 Brinkman modelp. 244
6.1.5 Nonlinear equation of statep. 244
6.1.6 Reacting layersp. 246
6.2 Surface tensionp. 246
6.2.1 Basic solutionp. 246
6.2.2 Perturbation equationsp. 248
6.2.3 Perturbation boundary conditionsp. 249
6.2.4 Numerical resultsp. 251
6.3 Porosity effectsp. 253
6.3.1 Porosity variationp. 253
6.3.2 Numerical resultsp. 255
6.4 Melting ice, global warmingp. 258
6.4.1 Three layer modelp. 258
6.4.2 Under ice melt pondsp. 260
6.5 Crystal growthp. 262
6.6 Heat pipesp. 265
6.7 Poiseuille flowp. 267
6.7.1 Darcy modelp. 267
6.7.2 Linearized perturbation equationsp. 269
6.7.3 (Chang et al., 2006) resultsp. 271
6.7.4 Brinkman - Darcy modelp. 272
6.7.5 Steady solutionp. 273
6.7.6 Linearized perturbation equationsp. 274
6.7.7 Numerical resultsp. 276
6.7.8 Forchheimer - Darcy modelp. 276
6.7.9 Brinkman - Forchheimer / Darcy modelp. 284
6.8 Acoustic waves, ocean bedp. 289
6.8.1 Basic equationsp. 290
6.8.2 Linear waves in the Bowen theoryp. 291
6.8.3 Boundary conditionsp. 293
6.8.4 Amplitude behaviourp. 294
7 Elastic Materials with Voidsp. 297
7.1 Acceleration waves in elastic materialsp. 297
7.1.1 Bodies and their configurationsp. 297
7.1.2 The deformation gradient tensorp. 298
7.1.3 Conservation of massp. 298
7.1.4 The equations of nonlinear elasticityp. 298
7.1.5 Acceleration waves in one-dimensionp. 300
7.1.6 Given strain energy and deformationp. 303
7.1.7 Acceleration waves in three dimensionsp. 305
7.2 Acceleration waves, inclusion of voidsp. 307
7.2.1 Porous media, voids, applicationsp. 307
7.2.2 Basic theory of elastic materials with voidsp. 308
7.2.3 Thermodynamic restrictionsp. 310
7.2.4 Acceleration waves in the isothermal casep. 312
7.3 Temperature rate effectsp. 314
7.3.1 Voids and second soundp. 314
7.3.2 Thermodynamics and voidsp. 316
7.3.3 Void-temperature acceleration wavesp. 318
7.3.4 Amplitude behaviourp. 320
7.4 Temperature displacement effectsp. 325
7.4.1 Voids and thermodynamicsp. 325
7.4.2 De Cicco - Diaco theoryp. 325
7.4.3 Acceleration wavesp. 327
7.5 Voids and type III thermoelasticityp. 329
7.5.1 Thermodynamic theoryp. 329
7.5.2 Linear theoryp. 331
7.6 Acceleration waves, microstretch theoryp. 332
8 Poroacoustic Wavesp. 337
8.1 Poroacoustic acceleration wavesp. 337
8.1.1 Equivalent fluid theoryp. 337
8.1.2 Jordan - Darcy theoryp. 339
8.1.3 Acceleration wavesp. 340
8.1.4 Amplitude equation derivationp. 341
8.2 Temperature effectsp. 344
8.2.1 Jordan-Darcy temperature modelp. 344
8.2.2 Wavespeedsp. 345
8.2.3 Amplitude equationp. 346
8.3 Heat flux delayp. 349
8.3.1 Cattaneo poroacoustic theoryp. 349
8.3.2 Thermodynamic justificationp. 351
8.3.3 Acceleration wavesp. 353
8.3.4 Amplitude derivationp. 356
8.3.5 Dual phase lag theoryp. 358
8.4 Temperature rate effectsp. 360
8.4.1 Green-Laws theoryp. 360
8.4.2 Wavespeedsp. 362
8.4.3 Amplitude behaviourp. 364
8.5 Temperature displacement effectsp. 366
8.5.1 Green-Naghdi thermodynamicsp. 366
8.5.2 Acceleration wavesp. 369
8.5.3 Wave amplitudesp. 371
8.6 Magnetic field effectsp. 373
9 Numerical Solution of Eigenvalue Problemsp. 375
9.1 The compound matrix methodp. 375
9.1.1 The shooting methodp. 375
9.1.2 A fourth order equationp. 376
9.1.3 The compound matrix methodp. 377
9.1.4 Penetrative convection in a porous mediump. 379
9.2 The Chebyshev tau methodp. 381
9.2.1 The D[superscript 2] Chebyshev tau methodp. 381
9.2.2 Penetrative convectionp. 384
9.2.3 Fluid overlying a porous layerp. 385
9.2.4 The D Chebyshev tau methodp. 389
9.2.5 Natural variablesp. 390
9.3 Legendre-Galerkin methodp. 391
9.3.1 Fourth order systemp. 391
9.3.2 Penetrative convectionp. 395
9.3.3 Extension of the methodp. 397
Referencesp. 399
Indexp. 433
Go to:Top of Page