Cover image for Modeling and analysis of telecommunications networks
Title:
Modeling and analysis of telecommunications networks
Personal Author:
Publication Information:
Hoboken, NJ : John Wiley & Sons, 2004
ISBN:
9780471348450

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010048201 TK5101 H394 2004 Open Access Book Book
Searching...
Searching...
30000010070402 TK5101 H394 2004 Open Access Book Book
Searching...
Searching...
30000010081847 TK5101 H394 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

This book covers at an advanced level mathematical methods for analysis of telecommunication networks. The book concentrates on various call models used in telecommunications such as quality of service (QoS) in packet-switched Internet Protocol (IP) networks, Asynchronous Transfer Mode (ATM), and Time Division Multiplexing (TDM). Professionals, researchers, and graduate and advanced undergraduate students of telecommunications will benefit from this invaluable guidebook.


Author Notes

Jeremiah F. Hayes, PhD, is recently retired as Distinguished Emeritus Professor of Electrical and Computer Engineering at Concordia University
Ganesh Babu, PhD, is a telecommunications consultant and part-time professor of Electrical and Computer Engineering at Concordia University


Table of Contents

Prefacep. xiii
Retrieving Files from the Wiley FTP and Internet Sitesp. xix
1 Performance Evaluation in Telecommunicationsp. 1
1.1 Introduction: The Telephone Networkp. 1
1.1.1 Customer Premises Equipmentp. 1
1.1.2 The Local Networkp. 2
1.1.3 Long-Haul Networkp. 4
1.1.4 Switchingp. 4
1.1.5 The Functional Organization of Network Protocolsp. 6
1.2 Approaches to Performance Evaluationp. 8
1.3 Queueing Modelsp. 9
1.3.1 Basic Formp. 9
1.3.2 A Brief Historical Sketchp. 10
1.4 Computational Toolsp. 13
Further Readingp. 14
2 Probability and Random Processes Reviewp. 17
2.1 Basic Relationsp. 17
2.1.1 Set Functions and the Axioms of Probabilityp. 17
2.1.2 Conditional Probability and Independencep. 20
2.1.3 The Law of Total Probability and Bayes' Rulep. 21
2.2 Random Variables--Probability Distributions and Densitiesp. 22
2.2.1 The Cumulative Distribution Functionp. 22
2.2.2 Discrete Random Variablesp. 23
2.2.3 Continuous Random Variablesp. 31
2.3 Joint Distributions of Random Variablesp. 38
2.3.1 Probability Distributionsp. 38
2.3.2 Joint Momentsp. 40
2.3.3 Autocorrelation and Autocovariance Functionsp. 41
2.4 Linear Transformationsp. 42
2.4.1 Single Variablep. 42
2.4.2 Sums of Random Variablesp. 42
2.5 Transformed Distributionsp. 46
2.6 Inequalities and Boundsp. 47
2.7 Markov Chainsp. 52
2.7.1 The Memoryless Propertyp. 52
2.7.2 State Transition Matrixp. 53
2.7.3 Steady-State Distributionp. 56
2.8 Random Processesp. 61
2.8.1 Defintion: Ensemble of Functionsp. 61
2.8.2 Stationarity and Ergodicityp. 61
2.8.3 Markov Processesp. 63
Referencesp. 64
Exercisesp. 64
3 Application of Birth and Death Processes to Queueing Theoryp. 67
3.1 Elements of the Queueing Modelp. 67
3.2 Little's Formulap. 69
3.2.1 A Heuristicp. 69
3.2.2 Graphical Proofp. 70
3.2.3 Basic Relationship for the Single-Server Queuep. 73
3.3 The Poisson Processp. 74
3.3.1 Basic Propertiesp. 74
3.3.2 Alternative Characterizations of the Poisson Processp. 75
3.3.3 Adding and Splitting Poisson Processesp. 78
3.3.4 Pure Birth Processesp. 79
3.3.5 Poisson Arrivals See Time Averages (PASTA)p. 81
3.4 Birth and Death Processes: Application to Queueingp. 82
3.4.1 Steady-State Solutionp. 82
3.4.2 Queueing Modelsp. 85
3.4.3 The M/M/1 Queue--Infinite Waiting Roomp. 86
3.4.4 The M/M/1/L Queue--Finite Waiting Roomp. 89
3.4.5 The M/M/S Queue--Infinite Waiting Roomp. 91
3.4.6 The M/M/S/L Queue--Finite Waiting Roomp. 95
3.4.7 Finite Sourcesp. 97
3.5 Method of Stagesp. 98
3.5.1 Laplace Transform and Averagesp. 98
3.5.2 Insensitivity Property of Erlang Bp. 100
3.5.3 The Erlang B Blocking Formula: N Lines, Homogeneous Trafficp. 103
Referencesp. 106
Exercisesp. 106
4 Networks of Queues: Product Form Solutionp. 113
4.1 Introduction: Jackson Networksp. 113
4.2 Reversibility: Burke's Theoremp. 114
4.2.1 Reversibility Definedp. 114
4.2.2 Reversibility and Birth and Death Processesp. 116
4.2.3 Departure Process from the M/M/S Queue: Burke's Theoremp. 118
4.3 Feedforward Networksp. 119
4.3.1 A Two-Node Examplep. 119
4.3.2 Feedforward Networks: Application of Burke's Theoremp. 120
4.3.3 The Traffic Equationp. 121
4.4 Product Form Solution for Open Networksp. 123
4.4.1 Flows Within Feedback Pathsp. 123
4.4.2 Detailed Derivation for a Two-Node Networkp. 124
4.4.3 N-Node Open Jackson Networksp. 127
4.4.4 Average Message Delay in Open Networksp. 132
4.4.5 Store-and-Forward Message-Switched Networksp. 134
4.4.6 Capacity Allocationp. 138
4.5 Closed Jackson Networksp. 139
4.5.1 Traffic Equationp. 139
4.5.2 Global Balance Equation--Solutionp. 141
4.5.3 Normalization Constant--Convolution Algorithmp. 142
4.5.4 Extension to the Infinite Server Casep. 146
4.5.5 Mean Value Analysis of Closed Chainsp. 147
4.5.6 Application to General Networksp. 149
4.6 BCMP Networksp. 150
4.6.1 Overview of BCMP Networksp. 150
4.6.2 Single Node--Exponential Serverp. 151
4.6.3 Single Node--Infinite Serverp. 152
4.6.4 Single Node--Processor Sharingp. 156
4.6.5 Single Node--Last Come First Served (LCFS)p. 158
4.7 Networks of BCMP Queuesp. 161
4.7.1 Store-and-Forward Message-Switched Nodesp. 163
4.7.2 Example: Window Flow Control--A Closed Network Modelp. 170
4.7.3 Cellular Radiop. 175
Referencesp. 178
Exercisesp. 179
5 Markov Chains: Application to Multiplexing and Accessp. 187
5.1 Time-Division Multiplexingp. 187
5.2 The Arrival Processp. 188
5.2.1 Packetizationp. 188
5.2.2 Compound Arrivalsp. 189
5.3 Asynchronous Time-Division Multiplexingp. 190
5.3.1 Finite Bufferp. 192
5.3.2 Infinite Bufferp. 195
5.4 Synchronous Time-Division Multiplexingp. 197
5.4.1 Application of Rouche's Theoremp. 199
5.4.2 Calculations Involving Rouche's Theoremp. 201
5.4.3 Message Delayp. 203
5.5 Random Access Techniquesp. 207
5.5.1 Introduction to ALOHAp. 207
5.5.2 Analysis of Delayp. 210
Referencesp. 215
Exercisesp. 216
6 The M/G/1 Queue: Imbedded Markov Chainsp. 219
6.1 The M/G/1 Queuep. 219
6.1.1 Imbedded Markov Chainsp. 220
6.1.2 Distribution of Message Delay: FCFSp. 222
6.1.3 Residual Life Distribution: Alternate Derivation of the Pollaczek-Khinchin Formulap. 231
6.1.4 Variation for the Initiator of a Busy Periodp. 234
6.1.5 Busy Period of the M/G/1 Queuep. 237
6.2 The G/M/1 Queuep. 241
6.3 Priority Queuesp. 244
6.3.1 Preemptive Resume Disciplinep. 245
6.3.2 L-Priority Classesp. 252
6.3.3 Nonpreemptive Prioritiesp. 256
6.4 Pollingp. 265
6.4.1 Basic Model: Applicationsp. 265
6.4.2 Average Cycle Timep. 267
6.4.3 Average Delay: Exhaustive, Gated, and Limited Servicep. 267
Referencesp. 274
Exercisesp. 275
7 Fluid Flow Analysisp. 281
7.1 On-Off Sourcesp. 281
7.1.1 Single Sourcep. 281
7.1.2 Multiple Sourcesp. 284
7.2 Infinite Buffersp. 286
7.2.1 The Differential Equation for Buffer Occupancyp. 286
7.2.2 Derivation of Eigenvaluesp. 289
7.2.3 Derivation of the Eigenvectorsp. 292
7.2.4 Derivation of Coefficientsp. 295
7.3 Finite Buffersp. 298
7.4 More General Sourcesp. 300
7.5 Analysis: Leaky Bucketp. 300
7.6 Equivalent Bandwidthp. 303
7.7 Long-Range-Dependent Trafficp. 304
7.7.1 Definitionsp. 304
7.7.2 A Matching Technique for LRD Traffic Using the Fluid Flow Modelp. 306
Referencesp. 309
Exercisesp. 310
8 The Matrix Geometric Techniquesp. 313
8.1 Introductionp. 313
8.2 Arrival Processesp. 313
8.2.1 The Markov Modulated Poisson Process (MMPP)p. 314
8.2.2 The Batch Markov Arrival Processp. 316
8.2.3 Further Extensionsp. 319
8.2.4 Solutions of Forward Equation for the Arrival Processp. 319
8.3 Imbedded Markov Chain Analysisp. 321
8.3.1 Revisiting the M/G/1 Queuep. 321
8.3.2 The Multidimensional Casep. 323
8.3.3 Application of Renewal Theoryp. 328
8.3.4 Moments at Message Departurep. 334
8.3.5 Steady-State Queue Length at Arbitrary Points in Timep. 335
8.3.6 Moments of the Queue Length at Arbitrary Points in Timep. 336
8.3.7 Virtual Waiting Timep. 336
8.4 A Matching Technique for LRD Trafficp. 337
8.4.1 d MMPPs and Equivalentsp. 337
8.4.2 A Fitting Algorithmp. 339
Appendix 8A Derivation of Several Basic Equations Used in Textp. 343
Appendix 8B Derivation of Variance and Covariance Functions of Two-State MMPPp. 347
Referencesp. 355
Exercisesp. 355
9 Monte Carlo Simulationp. 359
9.1 Simulation and Statisticsp. 359
9.1.1 Introductionp. 359
9.1.2 Sample Mean and Sample Variancep. 359
9.1.3 Confidence Intervalsp. 361
9.1.4 Sample Sizes and Run Timesp. 362
9.1.5 Histogramsp. 364
9.1.6 Hypothesis Testing and the Chi-Square Testp. 368
9.2 Random-Number Generationp. 370
9.2.1 Pseudorandom Numbersp. 370
9.2.2 Generation of Continuous Random Variablesp. 371
9.2.3 Discrete Random Variables--General Casep. 375
9.2.4 Generating Specific Discrete Random Variablesp. 377
9.2.5 The Chi-Square Test Revisitedp. 379
9.3 Discrete-Event Simulationp. 380
9.3.1 Time-Driven Simulationp. 380
9.3.2 Event-Driven Simulationp. 381
9.4 Variance Reduction Techniquesp. 382
9.4.1 Common Random-Number Techniquep. 383
9.4.2 Antithetic Variatesp. 384
9.4.3 Control Variatesp. 385
9.4.4 Importance Samplingp. 386
Referencesp. 387
Exercisesp. 387
Indexp. 389