Cover image for Case studies in reliability and maintenance
Title:
Case studies in reliability and maintenance
Series:
Wiley series in probability and statistics
Publication Information:
Hoboken, N.J. : Wiley-interscience, 2003
ISBN:
9780471413738

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010037283 TA169 C37 2003 Open Access Book Book
Searching...
Searching...
30000010028999 TA169 C37 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

Introducing a groundbreaking companion book to a bestselling reliability text
Reliability is one of the most important characteristics defining the quality of a product or system, both for the manufacturer and the purchaser. One achieves high reliability through careful monitoring of design, materials and other input, production, quality assurance efforts, ongoing maintenance, and a variety of related decisions and activities. All of these factors must be considered in determining the costs of production, purchase, and ownership of a product.
Case Studies in Reliability and Maintenance serves as a valuable addition to the current literature on the subject of reliability by bridging the gap between theory and application. Conceived during the preparation of the editors' earlier work, Reliability: Modeling, Prediction, and Optimization (Wiley, 2000), this new volume features twenty-six actual case studies written by top experts in their fields, each illustrating exactly how reliability models are applied.
A valuable companion book to Reliability: Modeling, Prediction, and Optimization, or any other textbook on the subject, the book features:
* Case studies from fields such as aerospace, automotive, mining, electronics, power plants, dikes, computer software, weapons, photocopiers, industrial furnaces, granite building cladding, chemistry, and aircraft engines
* A logical organization according to the life cycle of a product or system
* A unified format of discussion enhanced by tools, techniques, and models for drawing one's own conclusions
* Pertinent exercises for reinforcement of ideas
Of equal value to both students of reliability theory as well as professionals in industry, Case Studies in Reliability and Maintenance should be required reading for anyone seeking to understand how reliability and maintenance issues can be addressed and resolved in the real world.


Author Notes

WALLACE R. BLISCHKE, holds a PhD in Statistics and serves as Professor Emeritus at Marshall School of Business, University of Southern California.
D. N. PRABHAKAR MURTHY, PhD, is Professor of Engineering and Operations Management at the University of Queensland, St. Lucia, Australia. Together they have coauthored Reliability: Modeling, Prediction, and Optimization (Wiley); Warranty Cost Analysis; and Product Warranty Handbook.


Table of Contents

Wallace R. Blischke and D. N. Prabhakar MurthyDonald H. Ebbeler, Jr. and Kim M. Aaron and George Fox and W. John WalkerChun Kin Chan and Michael TortorellaSeppo Virtanen and Per-Erik HagmarkMalcolm J. Faddy and Richard J. Wilson and Gerry M. WinterWilliam Q. Meeker and Luis A. Escobar and Stephen A. ZayacMichael Osterman and Abhijit Dasgupta and Thomas StadtermanLoon Ching Tang and Soon Huat OngMladen A. Vouk and Anthony T. RiversMin Xie and Guan Yue Hong and Claes WohlinNozer D. Singpurwalla and Yuling Cui and Chung Wai KongWilliam Q. Meeker and Luis A. EscobarSunita Chulani and Bert M. Steece and Barry BoehmLinda C. WolstenholmeRoger M. Cooke and Karen A. SlijkhuisNicholas A. J. HastingsU. Dinesh Kumar and John CrockerMichael Bulmer and John EcclestonRoger M. Cooke and Eric Jager and D. LewandowskiGilles C. ZwingelsteinXisheng Jia and Anthony H. ChristerElsayed A. ElsayedPeter G. A. Townson and D. N. Prabhakar Murthy and Hal GurgenciKarl D. Majeske and Mark D. Riches and Hari P. AnnadiKakuro Amasaka and Shunji OsakiPeter C. Sander and Luis M. Toscano and Steven Luitjens and Valia T. Petkova and Antoine Huijben and Aarnout C. BrombacherBermawi P. Iskandar and Wallace R. Blischke
Contributorsp. xvii
Prefacep. xxv
1. Introduction and Overviewp. 1
1.1. Introductionp. 1
1.2. Reliability, Maintenance, Maintainability, and Qualityp. 3
1.3. History of Reliability and Maintainabilityp. 9
1.4. Applicationsp. 10
1.5. Life Cycle Conceptsp. 11
1.6. Tools and Techniques for the Study of Reliabilityp. 14
1.7. Reliability and Maintenance Data and Analysisp. 19
1.8. Issues in Reliability and Maintenancep. 23
1.9. Case Studies: An Overviewp. 24
Referencesp. 32
Part A. Cases with Emphasis on Product Designp. 35
2. Space Interferometer Reliability-Based Design Evaluationp. 37
2.1. Introductionp. 37
2.2. Problem Descriptionp. 38
2.3. Alternative Optical Interferometer Designsp. 39
2.4. Evaluation of Alternative Designsp. 53
2.5. Interpretations, Conclusions, and Extensionsp. 59
Referencesp. 60
Exercisesp. 60
Acronymsp. 61
3. Confidence Intervals for Hardware Reliability Predictionsp. 63
3.1. Introductionp. 63
3.2. Approachp. 64
3.3. Problem Descriptionp. 64
3.4. Reliability Modelingp. 66
3.5. Subassembly hardware Reliability Predictionp. 71
3.6. Construction of Component Failure Rate Databasep. 75
3.7. Comparing Field Reliability Results with Predictionsp. 78
3.8. Implementationp. 79
3.9. Conclusionsp. 79
Referencesp. 80
Exercisesp. 81
4. Allocation of Dependability Requirements in Power Plant Designp. 85
4.1. Introductionp. 85
4.2. System Characterizationp. 87
4.3. Modeling Dependability and Requirementsp. 87
4.4. Allocation of Requirementsp. 94
4.5. Continued Allocation in the Fault Treep. 101
4.6. Conclusionsp. 103
Referencesp. 105
Exercisesp. 106
Part B. Cases with Emphasis on Development and Testingp. 109
5. The Determination of the Design Strength of Granite Used as External Cladding for Buildingsp. 111
5.1. Introductionp. 111
5.2. Properties of Granitep. 113
5.3. Reliability Criteriap. 115
5.4. Current Practicesp. 117
5.5. Case Studyp. 122
5.6. Conclusionsp. 129
Referencesp. 130
Exercisesp. 131
Appendix A. Rosa Antico Datap. 132
Appendix B. White Berrocal Datap. 134
6. Use of Sensitivity Analysis to Assess the Effect of Model Uncertainty in Analyzing Accelerated Life Test Datap. 135
6.1. Introductionp. 135
6.2. Weibull Distribution and Initial Data Analysisp. 138
6.3. Response Surface Model Analysisp. 146
6.4. Effect of Stroke Displacement on Spring Lifep. 151
6.5. Concluding Remarksp. 157
Referencesp. 158
Exercisesp. 158
Appendix A. SPLIDA Commands for the Analysesp. 159
Appendix B. Spring-Accelerated Life Test Datap. 161
7. Virtual Qualification of Electronic Hardwarep. 163
7.1. Introductionp. 163
7.2. Automotive Module Case Studyp. 167
7.3. Summaryp. 184
Referencesp. 184
Exercisesp. 185
8. Development of a Moisture Soak Model for Surface-Mounted Devicesp. 187
8.1. Introductionp. 187
8.2. Experimental Procedure and Resultsp. 189
8.3. The Moisture Soak Modelp. 191
8.4. Discussionp. 199
Referencesp. 201
Exercisesp. 202
9. Construction of Reliable Software in Resource-Constrained Environmentsp. 205
9.1. Introductionp. 205
9.2. Constrained Developmentp. 207
9.3. Model and Metricsp. 210
9.4. Case Studiesp. 216
9.5. Summaryp. 227
Referencesp. 227
Exercisesp. 230
10. Modeling and Analysis of Software System Reliabilityp. 233
10.1. Introductionp. 233
10.2. NHPP Software Reliability Growth Modelsp. 235
10.3. Case Studyp. 238
10.4. Problems and Alternativesp. 240
10.5. Case Study (Continued)p. 244
10.6. Discussionp. 247
Referencesp. 248
Exercisesp. 249
11. Information Fusion for Damage Predictionp. 251
11.1. Introductionp. 251
11.2. Approach Usedp. 252
11.3. Binary Random Variable and Test Datap. 253
11.4. Physical Parameters and Expert Testimoniesp. 254
11.5. Information Fusion: A Bayesian Approachp. 255
11.6. Data Analysis and Interpretationp. 262
11.7. Conclusionsp. 263
Referencesp. 263
Exercisesp. 264
Appendixp. 264
Part C. Cases with Emphasis on Defect Prediction and Failure Analysisp. 267
12. Use of Truncated Regression Methods to Estimate the Shelf Life of a Product from Incomplete Historical Datap. 269
12.1. Introductionp. 269
12.2. Truncated Data Backgroundp. 273
12.3. Truncated Regression Model for the Truncated Product A Shelf-Life Datap. 277
12.4. Comparison of Truncated and Censored Data Analysisp. 283
12.5. Concluding Remarks and Extensionsp. 286
Referencesp. 288
Exercisesp. 288
Appendix. SPLIDA Commands for the Analysesp. 290
13. Determining Software Quality Using COQUALMOp. 293
13.1. Introductionp. 293
13.2. Software Reliability Definitionsp. 294
13.3. Constructive Quality Model (COQUALMO)p. 294
13.4. Case Studyp. 307
13.5. Conclusionsp. 309
Referencesp. 310
Exercisesp. 311
14. Use of Extreme Values in Reliability Assessment of Composite Materialsp. 313
14.1. Introductionp. 313
14.2. Test Data and Background Knowledgep. 314
14.3. Model Fitting and Predictionp. 314
14.4. Strength Testingp. 324
14.5. Discussionp. 328
Referencesp. 329
Exercisesp. 329
15. Expert Judgment in the Uncertainty Analysis of Dike Ring Failure Frequencyp. 331
15.1. Introductionp. 331
15.2. Uncertainty Analysisp. 332
15.3. Expert Judgment Methodp. 333
15.4. The Dike Ring Expert Judgment Studyp. 337
15.5. Resultsp. 339
15.6. Conclusionsp. 345
Referencesp. 347
Exercisesp. 348
Appendix. Example of Elicitation Question: Model Term Zwendlp. 349
Part D. Cases with Emphasis on Maintenance and Maintainabilityp. 351
16. Component Reliability, Replacement, and Cost Analysis with Incomplete Failure Datap. 353
16.1. Introductionp. 353
16.2. Maintenance Datap. 354
16.3. Modeling Failuresp. 357
16.4. Component Replacement Policy Optionsp. 361
16.5. Planned Replacement--Analysis and Costsp. 364
16.6. Conclusionp. 372
Referencesp. 373
Exercisesp. 374
Appendix. RELCODE Softwarep. 375
17. Maintainability and Maintenance--A Case Study on Mission Critical Aircraft and Engine Componentsp. 377
17.1. Introductionp. 377
17.2. The Airline Company Profilep. 381
17.3. Analysis of Unscheduled Maintenancep. 383
17.4. Engine Reliability and Maintenance Policiesp. 387
17.5. Planned and Unplanned Maintenance in Enginep. 391
17.6. Conclusionsp. 396
Referencesp. 397
Exercisesp. 398
18. Photocopier Reliability Modeling Using Evolutionary Algorithmsp. 399
18.1. Introductionp. 399
18.2. System Characterizationp. 400
18.3. Preliminary Analysisp. 401
18.4. Weibull Modelsp. 405
18.5. Evolutionary (Genetic) Algorithmp. 407
18.6. Model Fitting and Analysisp. 408
18.7. Modeling Failures over Timep. 415
18.8. Conclusionsp. 418
Referencesp. 419
Exercisesp. 419
Appendixp. 421
19. Reliability Model for Underground Gas Pipelinesp. 423
19.1. Introductionp. 423
19.2. Modeling Pipeline Failuresp. 425
19.3. Third-Party Interferencep. 428
19.4. Damage Due to Environmentp. 432
19.5. Failure Due to Corrosionp. 433
19.6. Validationp. 437
19.7. Results for Rankingp. 439
19.8. Conclusionsp. 444
Referencesp. 444
Exercisesp. 445
20. RCM Approach to Maintaining a Nuclear Power Plantp. 447
20.2. Introductionp. 447
20.2. System Characterization and Modelingp. 448
20.3. An Overview of RCMp. 452
20.4. Field Datap. 463
20.5. Maintenance of CVCS Systemp. 466
20.6. Conclusionsp. 471
Referencesp. 473
Exercisesp. 474
Appendixp. 476
21. Case Experience Comparing the RCM Approach to Plant Maintenance with a Modeling Approachp. 477
21.1. Introductionp. 477
21.2. Delay Time Conceptp. 479
21.3. Data Records and Analysisp. 480
21.4. Factors Affecting Human Error Failuresp. 483
21.5. Modeling Assumptionsp. 484
21.6. Decision Modelp. 485
21.7. Estimating Parametersp. 486
21.8. The Modelsp. 487
21.9. The RCM Approachp. 489
21.10. Discussion and Conclusionsp. 491
Referencesp. 493
Exercisesp. 494
Part E. Cases with Emphasis on Operations Optimization and Reengineeringp. 495
22. Mean Residual Life and Optimal Operating Conditions for Industrial Furnace Tubesp. 497
22.1. Introductionp. 497
22.2. Failure Mechanisms and Detectionp. 498
22.3. Residual Life Prediction: Deterministic Approachesp. 499
22.4. Residual Life Prediction: Reliability Approachp. 502
22.5. Optimum Operating Temperaturep. 509
22.6. Optimum Preventive Maintenancep. 510
22.7. Summaryp. 511
Referencesp. 511
Exercisesp. 513
23. Optimization of Dragline Loadp. 517
23.1. Introductionp. 517
23.2. Approach Usedp. 518
23.3. System Characterizationp. 519
23.4. Field Datap. 521
23.5. Component Level: Modeling, Estimation, and Analysisp. 523
23.6. System Level Modeling and Analysisp. 529
23.7. Modeling the Effect of Dragline Loadp. 532
23.8. Optimal Dragline Loadp. 536
23.9. Conclusions and Recommendationsp. 538
Referencesp. 540
Exercisesp. 541
Appendixp. 543
24. Ford's Reliability Improvement Process--A Case Study on Automotive Wheel Bearingsp. 545
24.1. Introductionp. 545
24.2. Approach Usedp. 547
24.3. Quantitative Analysis Methodsp. 550
24.4. Data and Analysisp. 558
24.5. Conclusions and Recommendationsp. 567
Referencesp. 568
Exercisesp. 569
25. Reliability of Oil Seal for Transaxle--A Science SQC Approach at Toyotap. 571
25.1. Introductionp. 571
25.2. Oil Sealp. 572
25.3. Reliability Improvement at Toyota: A Cooperative Team Approachp. 574
25.4. Reliability Improvement of Oil Sealp. 576
25.5. Conclusionp. 586
Referencesp. 586
Exercisesp. 587
Part F. Cases with Emphasis on Product Warrantyp. 589
26. Warranty Data Analysis for Assessing Product Reliabilityp. 501
26.1. Introductionp. 591
26.2. Reliability Metricsp. 594
26.3. Field Feedbackp. 600
26.4. Analysis of Field Datap. 604
26.5. Conclusionsp. 617
Referencesp. 620
Exercisesp. 621
27. Reliability and Warranty Analysis of a Motorcycle Based on Claims Datap. 623
27.1. Introductionp. 623
27.2. Product, Warranty and Datap. 626
27.3. Methodologyp. 629
27.4. Preliminary Data Analysisp. 638
27.5. Kalbfleisch-Lawless Analysisp. 641
27.6. Gertsbakh-Kordonsky Analysisp. 645
27.7. Warranty Analysisp. 649
27.8. Conclusionsp. 651
Referencesp. 652
Exercisesp. 655
Indexp. 657