Cover image for Waveguide components for antenna feed system : theory and CAD
Title:
Waveguide components for antenna feed system : theory and CAD
Personal Author:
Publication Information:
Boston : Artech House, 1993
ISBN:
9780890065822

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000002860165 TK7871.65.U34 1993 Open Access Book Book
Searching...
Searching...
30000002499691 TK7871.65.U34 1993 Open Access Book Book
Searching...

On Order

Summary

Summary

This book delivers an in-depth examinations of the three basic field-theoretical methods used for the design aid of different waveguide components. You'll find CAD algorithms, examples of their applications, and operational principles of various components used in antenna feed systems.


Table of Contents

Prefacep. xiii
Chapter 1 Introductionp. 1
Chapter 2 Selected Numerical Methodsp. 9
2.1 Mode-Matching Techniquesp. 9
2.1.1 Introductionp. 9
2.1.2 Backgroundp. 10
2.1.3 H-Plane Discontinuityp. 12
Normalizationp. 14
Generalized Scattering Matrixp. 15
Relative Convergencep. 16
Discontinuity of Finite Lengthp. 18
Cascading Scattering Matricesp. 19
Intermediate Regionp. 20
2.1.4 Waveguide Bifurcationp. 20
2.1.5 E-Plane Discontinuityp. 25
2.1.6 T-Junctions (Resonator Method)p. 27
E-Plane T-Junctionp. 27
H-Plane T-Junctionp. 31
2.1.7 Double-Plane Stepsp. 32
TE[characters not producible] Mode Analysisp. 33
TE[subscript mn]-TM[subscript mn] Mode Analysisp. 34
2.1.8 Different Cross-Sectionsp. 37
Circular Cross-Sectionp. 37
Cross-Sections of Unknown Eigenfunctionsp. 39
2.1.9 Other Mode-Matching Techniquesp. 40
Conservation of Complex Powerp. 40
Admittance Matrix Formulationp. 40
Appendix to Section 2.1p. 42
References to Section 2.1p. 50
2.2 Finite-Element Methodp. 51
2.2.1 Introductionp. 51
2.2.2 Field Formulationp. 52
2.2.3 Variational Methodsp. 54
2.2.4 Rayleigh-Ritz Methodp. 58
2.2.5 Finite-Element Methodp. 59
Two-dimensional Scalar Scattering Problemp. 59
Scattering Parametersp. 63
Infinite Elementsp. 63
Uniform Guiding Structuresp. 63
Characteristic Impedancep. 66
2.2.6 Summary of FEM Featuresp. 67
2.2.7 A FEM Computer Program for Multi-Conductor Linesp. 68
Acknowledgementp. 68
Appendix to Section 2.2p. 69
References to Section 2.2p. 71
2.3 The Transmission Line Matrix Methodp. 73
2.3.1 Fundamentals of the TLM Methodp. 73
2.3.2 Modeling Microwave Structures with the TLM Methodp. 76
Modeling Boundariesp. 76
Modeling Portsp. 77
Modeling Materialsp. 78
Regular versus Variable TLM Meshp. 79
Time- and Frequency-Domain Informationp. 81
Computation of Microwave S-Parametersp. 81
Errors and Correctionsp. 82
2.3.3 Summary of the TLM Methodp. 82
2.3.4 Application of the Three-Dimensional Symmetrical Condensed Node TLM Method to Computation of Microwave S-Parametersp. 84
Appendix to Section 2.3p. 86
References to Section 2.3p. 101
Chapter 3 Waveguide Components for Antenna Feed Systemsp. 103
3.1 Transmission Linesp. 104
3.1.1 Definitionsp. 104
Electromagnetic Wave Modes (Eigenmodes, Eigenvectors)p. 104
Wave Propagating Media (Waveguides, Transmission Structures)p. 105
Propagation Constants (Wave Numbers, Eigenvalues)p. 105
Guided Wavelengthp. 106
Dispersion Characteristicsp. 106
Characteristic Impedancep. 107
Lossesp. 108
Power Handling Capabilityp. 108
3.1.2 Rectangular Waveguidesp. 109
Modes in Rectangular Waveguidesp. 110
Fundamental Mode in Rectangular Waveguidep. 112
Mode Dispersionp. 112
Characteristic Impedancep. 114
Lossesp. 114
Power Handling Capabilityp. 115
3.1.3 Ridge Waveguidesp. 115
Modes in Ridge Waveguidesp. 116
Dispersion Characteristicsp. 117
Characteristic Impedancep. 117
Lossesp. 118
Power Handling Capabilityp. 120
3.1.4 Circular Waveguidesp. 120
Modes in Circular Waveguidesp. 121
Dispersion Characteristicsp. 124
Characteristic Impedancep. 124
Lossesp. 124
Power Handling Capabilityp. 126
3.1.5 Coaxial Waveguidesp. 127
3.1.6 Circular Coaxial Linesp. 127
Modes in Circular Coaxial Linesp. 127
Fundamental (TEM) Mode in Coaxial Waveguidep. 130
Dispersion Characteristics of the Coaxial Waveguidep. 130
Characteristic Impedancep. 130
Lossesp. 131
Power Handling Capabilityp. 132
3.1.7 Square (Rectangular) Coaxial Waveguidesp. 133
Modes in Square Coaxial Linep. 133
Dispersion Characteristicsp. 134
Characteristic Impedancep. 136
Lossesp. 137
Power Handling Capabilityp. 138
References to Section 3.1p. 139
3.2 Impedance Transformers and Matching Circuitsp. 139
3.2.1 Impedance-Matching Concepts and Methodsp. 140
Matching a Real Impedance to Another Real Impedancep. 142
Matching a Real to a Complex Impedancep. 145
Matching With a Section of Transmission Line and a Quarter-Wave Transformerp. 145
Single Stub Matchingp. 146
Double-Stub Matchingp. 147
3.2.2 Practical Impedance Transformers--Design Methods and Examplesp. 148
Impedance Transformers in Rectangular (Square) Waveguidesp. 148
Rectangular-to-Ridge Waveguide Impedance Transformerp. 151
Circular Waveguide Transformersp. 154
Stepped Dielectric Slab Transformersp. 157
Appendix to Section 3.2p. 160
References to Section 3.2p. 162
3.3 Waveguide Bendsp. 163
3.3.1 Field Analysis of Waveguide Bendsp. 165
3.3.2 Design of Waveguide Bendsp. 165
H-Plane Bendsp. 166
E-Plane Bendsp. 169
References to Section 3.3p. 174
3.4 Microwave Filtersp. 174
3.4.1 A Summary of Development in Theory and Design Methods for Microwave Filtersp. 174
3.4.2 A Generalized CAD Method for Microwave Filtersp. 176
Performance Parameters of a Microwave Filterp. 176
Synthesisp. 177
Analysisp. 183
Optimizationp. 184
3.4.3 CAD of Selected Types of Direct-Coupled-Resonator Filtersp. 185
Waveguide Stub Filtersp. 185
E-Plane Filtersp. 190
Corrugated Waveguide Filtersp. 200
Evanescent-Mode Waveguide Filtersp. 207
3.4.4 Circular Cavity Filtersp. 212
3.4.4.1 Synthesis of Filter Characteristics and Equivalent Circuitsp. 217
Approximation of Filter Characteristicsp. 217
Synthesis of Equivalent Circuitsp. 220
3.4.4.2 Degenerate (Multimode) Cavity Designp. 221
Cavity Modesp. 221
Dual Mode Cavity Designp. 224
Triple and Quadruple Mode Cavity Designp. 224
Tuning and Coupling of Degenerate Cavity Modesp. 225
3.4.4.3 Filter Couplings--Design and Realizationp. 226
Intercavity and Interface Couplingsp. 226
Offset Slots and Anticouplingp. 233
Spurious Mode Controlp. 237
Cavity Arrangement and Coupling Configurationsp. 237
Cavity Filter Design Technologyp. 247
References to Section 3.4p. 248
3.5 Multiplexersp. 252
3.5.1 Circulator/Filter Chainp. 252
3.5.2 Directional Filter Multiplexing Approachp. 259
3.5.3 Manifold Multiplexing Techniquep. 264
3.5.4 Millimeter-Wave Multiplexersp. 278
E-Plane T-Junction-type Diplexerp. 283
H-Plane T-Junction-type Diplexerp. 289
H-Plane Divider-type Diplexerp. 293
E-Plane Divider-type Multiplexersp. 294
E-H-Plane Divider-type Quadruplexerp. 295
H-Plane Branching-type Multiplexersp. 296
Other Configurationsp. 300
Appendix to Section 3.5p. 304
References to Section 3.5p. 306
3.6 Directional Couplersp. 307
3.6.1 Introductionp. 307
3.6.2 Basic Coupler Sections and Mechanismsp. 309
Contra-Directional Couplersp. 311
Co-Directional Couplersp. 312
Small-Aperture Couplersp. 314
3.6.3 Quarter-Wave Transformer Prototypep. 314
3.6.4 Contra-Directional (TEM-Line) Couplersp. 316
3.6.5 Aperture Couplersp. 320
Analysisp. 320
Circular Aperturesp. 322
Rectangular Aperturesp. 323
Designp. 325
3.6.6 Branch-Guide Couplersp. 329
3.6.7 Conclusionsp. 339
Appendix to Section 3.6p. 340
References to Section 3.6p. 342
3.7 Power Dividers and Combinersp. 343
3.7.1 Introductionp. 343
3.7.2 Basic Waveguide Power Dividers/Combinersp. 345
Waveguide E-Plane Power Dividers/Combinersp. 346
Waveguide H-Plane Power Divider/Combinerp. 351
Waveguide E-H-Plane Power Divider/Combinerp. 353
Other Waveguide E- or H-Plane Power Dividersp. 354
3.7.3 Radial Waveguide Power Dividers/Combinersp. 355
3.7.4 Hybrids as Power Dividers/Combinersp. 360
Hybrid (Magic) T-Junctionp. 360
Turnstile Junctionp. 361
Hybrid Ringsp. 362
3.7.5 Variable Power Dividers/Combinersp. 363
3.7.6 Considerations for Power Combinersp. 367
References to Section 3.7p. 369
3.8 Polarization Discrimination Components and Equipmentp. 371
3.8.1 Linear and Circular Polarizationsp. 372
Linear Polarizationp. 372
Circular Polarizationp. 374
3.8.2 Orthomode Transducerp. 377
3.8.2.1 Standard Narrowband OMT Design (OMT Class 1)p. 382
Narrowband Design Type 1 (Taper/Branching OMT)p. 382
Narrowband Deisgn Type 2 (Septum/Branching OMT)p. 385
Narrowband Design Type 3 (Acute Angle or Longitudinal Orthomode Branching)p. 391
Narrowband Design Type 4 (Short Circuited Common Waveguide)p. 393
3.8.2.2 Broadband OMT Design (OMT Class 2)p. 395
Broadband OMT Design Type 1 (Distinct Dual Junction Type)p. 397
Broadband OMT Design Type 2 (Equal Dual Junction Type)p. 400
3.8.2.3 Four (Multi) Port Combiner (OMT Class 3)p. 403
Combiner Design Type 1 (Modular Approach)p. 404
Combiner Design Type 2 (Unsymmetrical Branching Approach)p. 405
Combiner Design Type 3 (Symmetrical Branching Approach)p. 413
3.8.3 Circular Polarizing and Discrimination Equipmentp. 418
3.8.3.1 Conventional Polarizersp. 419
Conventional Polarizers, Group 1p. 421
Corrugated Waveguide Polarizersp. 426
Dielectric Slab Waveguide Polarizersp. 428
Conventional Polarizers, Group 2 (Septum Polarizer)p. 432
3.8.3.2 Polarization Discrimination by OMT and Power-Splitterp. 435
3.8.3.3 Circularly Polarized Four (Multi) Port Combinersp. 436
Four (Multi) Port Combiners with Polarizersp. 438
Circularly Polarized Four (Multi) Port Combiners with Proper RF Circuitriesp. 440
References to Section 3.8p. 443