Cover image for Metal vinylidenes and allenylidenes in catalysis : from reactivity to applications in synthesis
Title:
Metal vinylidenes and allenylidenes in catalysis : from reactivity to applications in synthesis
Publication Information:
Weinheim : Wiley, 2008
Physical Description:
xvii, 338 p. : ill. ; 25 cm.
ISBN:
9783527318926
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010207456 QD505 M475 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Focusing on preparation and applications in synthesis and catalysis, this book finally closes a gap in the literature by summarizing this hot topic for the first time.
As such, it gathers in one volume the key features of metal vinylidene and allenylidene complexes as well as reactive species and covers applications in metathesis, polymerization, molecular materials, carbon rich compounds and fine chemical production. The emphasis here is on the selective transformations of alkynes and enynes plus simple and complex molecules containing a triple C-C bond.
The result is a must-have ready reference for organic, catalytic, complex, theoretical and polymer chemists, as well as those working with/on organometallics.


Author Notes

Pierre H. Dixneuf, professor at the University of Rennes has been the head of the CNRS research Unit 6509 in Rennes (1986-1999), and he created the Institute of Chemistry in Rennes in 2000. He was research advisor at the University of Rennes (2001-04) and at CNRS chemistry headquarters (1996-99).
He obtained his academic degrees, PhD and habilitation, in Rennes was on leave of absence with professor M. F. Lappert, University of Sussex for one year. He innovated first in organometallic chemistry and then in homogeneous catalysis and conjugated carbon-rich systems. He has authored over 330 publications of which 70 in the last 5 years.
He has received several research awards : Le Bel (SFC), Grignard-Wittig (GDCh), Sacconi (Italy 2006), Académie des Sciences grand prix (2006).

Dr. Christian Bruneau is the head of the CNRS-University research group "Catalysis and Organometallics" in Rennes. He graduated in Chemistry from the Institut National Supérieur de Chimie Industrielle de Rouen in 1974, and obtained his Doctorate degree at the ENSCR national school of Rennes. Since 1986, he has been developing his research activities in the field of molecular organometallic catalysis. He is strongly involved in ruthenium-catalyzed selective transformations of alkynes, alkenes and enynes, cycloisomerization, rearrangement, and addition reactions. He is developing a topic on enantioselective reactions, mainly hydrogenation and allylic substitution with transition metal catalysts.


Table of Contents

Michael I. BruceVictorio Cadierno and Pascale Crochet and Jose GimenoHelmut FischerJun Zhu and Zhenyang LinNobuharu IwasawaArjan Odedra and Rai-Shung LiuYoshiaki Nishibayashi and Sakae UemuraRaluca Malacea and Pierre H. DixneufSean H. Wiedemann and Chulbom LeeChristian Bruneau
Prefacep. XIII
List of Contributorsp. XV
1 Preparation and Stoichiometric Reactivity of Mononuclear Metal Vinylidene Complexesp. 1
1.1 Introductionp. 1
1.2 Preparative Methodsp. 2
1.2.1 From 1-Alkynesp. 2
1.2.1.1 Migration of Other Groups (SiR[subscript 3], SnR[subscript 3], SR, SeR)p. 5
1.2.2 The [eta superscript 2]-Alkyne to Hydrido([eta superscript 1]-Alkynyl) to Vinylidene Transformationp. 6
1.2.3 From Metal Alkynylsp. 6
1.2.3.1 Some Specific Examplesp. 8
1.2.3.2 Redox Rearrangements of Metal Alkynyls and Vinylidenesp. 9
1.2.4 From Metal Allenylidenes via Metal Alkynylsp. 11
1.2.5 From Metal-Carbyne Complexesp. 11
1.2.6 From Metal-Carbon Complexesp. 14
1.2.7 From Acyl Complexesp. 15
1.2.8 From Vinylsp. 15
1.2.9 From Alkenesp. 16
1.2.10 Miscellaneous Reactions Affording Vinylidenesp. 16
1.2.11 Vinylvinylidene Complexesp. 17
1.3 Stoichiometric Reactionsp. 19
1.3.1 Reactions at C[subscript alpha]p. 20
1.3.1.1 Deprotonationp. 20
1.3.1.2 Group 16 Nucleophiles. Oxygenp. 20
1.3.1.3 Alcoholsp. 21
1.3.1.4 Sulfurp. 21
1.3.1.5 Group 15 Nucleophiles. Nitrogenp. 22
1.3.1.6 Phosphorusp. 22
1.3.1.7 Halogen Nucleophilesp. 22
1.3.1.8 Carbon Nucleophilesp. 22
1.3.1.9 Hydridep. 22
1.3.2 Intramolecular Reactionsp. 23
1.3.2.1 Formation of Cyclopropenesp. 23
1.3.2.2 Attack on Coordinated Phosphinesp. 24
1.3.2.3 Couplingp. 24
1.3.2.4 Vinylidene/Alkyne Couplingp. 25
1.3.2.5 Formation of [pi]-Bonded Ligandsp. 25
1.3.3 Reactions at C[subscript beta]p. 25
1.3.3.1 Protonationp. 26
1.3.3.2 Alkylationp. 27
1.3.3.3 Other Electrophilesp. 27
1.3.4 Cycloaddition Reactionsp. 27
1.3.5 Adducts with Other Metal Fragmentsp. 28
1.3.6 Ligand Substitutionp. 30
1.3.7 Miscellaneous Reactionsp. 31
1.4 Chemistry of Specific Complexesp. 33
1.4.1 Reactions of Ti(=C=CH[subscript 2])Cp*[subscript 2]p. 33
1.4.2 Complexes Derived From Li[M(C identical with CR)(CO)(NO)Cp] (M=Cr, W)p. 34
1.4.3 Reactions of M(=C=CRR')(CO)[subscript 5] (M = Cr, Mo, W)p. 35
1.4.4 Reactions of M(=C=CRR')(CO)(L) Cp (M = Mn, Re)p. 37
1.4.5 Reactions of [M(=C=CRR')(L')(P)Cp' superscript +] (M = Fe, Ru, Os)p. 39
1.4.6 Reactions of [Ru{{=C=C(SMe)[subscript 2]}}(PMe[subscript 3])subscript 2 Cp superscript +]p. 39
1.4.7 Reactions of trans-MCl(=C=CRR')(L)[subscript 2] (M=Rh, Ir)p. 41
1.5 Reactions Supposed to Proceed via Metal Vinylidene Complexesp. 42
Abbreviationsp. 45
Referencesp. 46
2 Preparation and Stoichiometric Reactivity of Metal Allenylidene Complexesp. 61
2.1 Introductionp. 61
2.2 Preparation of Allenylidene Complexesp. 62
2.2.1 General Methods of Synthesisp. 62
2.2.2 Group 6 Metalsp. 63
2.2.3 Group 7 Metalsp. 64
2.2.4 Group 8 Metalsp. 65
2.2.4.1 Octahedral and Five-Coordinate Derivativesp. 66
2.2.4.2 Half-Sandwich Derivativesp. 66
2.2.4.3 Other Synthetic Methodologiesp. 68
2.2.5 Group 9 Metalsp. 68
2.3 Coordination Models and Structural Featuresp. 69
2.4 Stoichiometric Reactivity of Allenylidenesp. 69
2.4.1 General Considerations of Reactivityp. 69
2.4.2 Electrophilic Additionsp. 70
2.4.3 Nucleophilic Additionsp. 71
2.4.3.1 Group 6 Metal-Allenylidenesp. 72
2.4.3.2 Group 7 Metal-Allenylidenesp. 73
2.4.3.3 Group 8 Metal-Allenylidenesp. 74
2.4.3.4 Group 9 Metal-Allenylidenesp. 78
2.4.4 C-C Couplingsp. 79
2.4.5 Cycloaddition and Cyclization Reactionsp. 81
2.4.5.1 Reactions Involving the M=C[subscript alpha] Bondp. 81
2.4.5.2 Reactions Involving the C[alpha]=C[subscript beta] Bondp. 82
2.4.5.3 Reactions Involving the C[subscript beta]=C[subscript gamma] Bondp. 84
2.4.5.4 Reactions Involving Both C[subscript alpha]=C[subscript beta] and C[subscript beta]=C[subscript gamma] Bonds (1,2,3-Heterocyclizations)p. 87
2.4.6 Other Reactionsp. 89
2.5 Concluding Remarksp. 90
Referencesp. 91
3 Preparation and Reactivity of Higher Metal Cumulenes Longer than Allenylidenesp. 99
3.1 Introductionp. 99
3.2 Steric and Electronic Structurep. 100
3.3 Synthesis of Cumulenylidene Complexesp. 103
3.3.1 Butatrienylidene Complex Synthesisp. 103
3.3.2 Pentatetraenylidene Complex Synthesisp. 108
3.3.3 Hexapentaenylidene Complex Synthesisp. 113
3.3.4 Heptahexaenylidene Complex Synthesisp. 113
3.4 Reactions of Higher Metal Cumulenesp. 114
3.4.1 Butatrienylidene Complexesp. 114
3.4.2 Pentatetraenylidene Complexesp. 119
3.4.3 Hexapentaenylidene Complexesp. 123
3.4.4 Heptahexaenylidene Complexesp. 123
3.5 Summary and Conclusionp. 124
Referencesp. 125
4 Theoretical Aspects of Metal Vinylidene and Allenylidene Complexesp. 129
4.1 Introductionp. 129
4.2 Electronic Structures of Metal Vinylidene and Allenylidene Complexesp. 130
4.2.1 Metal Vinylidene Complexesp. 130
4.2.2 Metal Allenylidene Complexesp. 132
4.3 Barrier of Rotation of Vinylidene Ligandsp. 132
4.4 Tautomerization Between [eta superscript 2]-Acetylene and Vinylidene on Transition Metal Centersp. 134
4.4.1 [eta superscript 2]-Acetylene to Vinylidenep. 134
4.4.2 Vinylidene to [eta superscript 2]-Acetylenep. 139
4.5 Reversible C-C [sigma]-bond Formation by Dimerization of Metal Vinylidene Complexesp. 141
4.6 Metal Vinylidene Mediated Reactionsp. 142
4.6.1 Alkynol Cycloisomerization Promoted by Group 6 Metal Complexesp. 142
4.6.2 Unusual Intramolecular [2 + 2] Cycloaddition of a Vinyl Group with a Vinylidene C=C Bondp. 148
4.6.3 Intramolecular Methathesis of a Vinyl Group with a Vinylidene C=C Double Bondp. 149
4.6.4 [2 + 2] Cycloaddition of Titanocene Vinylidene Complexes with Unsaturated Moleculesp. 150
4.7 Heavier Group 14 Analogs of Metal Vinylidene Complexesp. 150
4.8 Allenylidene Complexesp. 151
4.9 Summaryp. 152
Referencesp. 153
5 Group 6 Metal Vinylidenes in Catalysis (Cr, Mo, W)p. 159
5.1 Introductionp. 159
5.2 Preparation of Fischer-type Carbene Complexes through the Generation of the Vinylidene Complexesp. 159
5.3 Utilization of Pentacarbonyl Vinylidene Complexes of Group 6 Metals for Synthetic Reactionsp. 164
5.3.1 Catalytic Addition of Hetero-Nucleophilesp. 165
5.3.2 Catalytic Addition of Carbo-Nucleophilesp. 172
5.3.3 Electrocyclization and Related Reactionsp. 178
5.4 Utilization of Vinylidene to Alkyne Conversionp. 184
5.5 Synthetic Reactions Utilizing Other Kinds of Vinylidene Complexes of Group 6 Metalsp. 186
5.6 Conclusionp. 187
Referencesp. 188
6 Ruthenium Vinylidenes in the Catalysis of Carbocyclizationp. 193
6.1 Introductionp. 193
6.2 Stoichiometric Carbocyclization via Ruthenium Vinylidenep. 193
6.3 Catalytic Carbocyclization via Electrocyclization of Ruthenium-Vinylidene Intermediatesp. 195
6.3.1 Cyclization of cis-3-En-1-Ynesp. 195
6.3.2 Cycloaromatization of 3,5-Dien-1-Ynesp. 196
6.3.3 Ruthenium-Catalyzed Cyclization of 3-Azadienynesp. 202
6.3.4 Cycloisomerization of cis-1-Ethynyl-2-Vinyloxiranesp. 203
6.3.5 Catalytic Cyclization of Enynyl Epoxidesp. 204
6.4 Catalytic Carbocyclization via Cycloaddition of Ruthenium Vinylidene Intermediatesp. 208
6.4.1 Cyclocarbonylation of 1,1'-Bis(silylethynyl)ferrocenep. 208
6.4.2 Dimerization of 1-Arylethynes to 1-Aryl-Substituted Naphthalenesp. 209
6.4.3 Ruthenium-Catalyzed Cycloaddition Reaction between Enyne and Alkenep. 209
6.5 Catalyzed Cyclization of Alkynals to Cycloalkenesp. 211
6.6 Ruthenium-Catalyzed Hydrative Cyclization of 1,5-Enynesp. 211
6.7 Carbocyclization Initiated by Addition of C-Nucleophile to Ruthenium Vinylidenep. 213
6.8 Conclusionp. 214
Referencesp. 214
7 Allenylidene Complexes in Catalysisp. 217
7.1 Introductionp. 217
7.2 Propargylic Substitution Reactionsp. 219
7.2.1 Propargylic Substitution Reactions with Heteroatom-Centered Nucleophilesp. 219
7.2.2 Propargylic Substitution Reactions with Carbon-Centered Nucleophilesp. 223
7.2.3 Reaction Pathway for Propargylic Substitution Reactionsp. 224
7.2.4 Asymmetric Propargylic Alkylation with Acetonep. 227
7.2.5 Cycloaddition between Propargylic Alcohols and Cyclic 1,3-Dicarbonyl Compoundsp. 231
7.3 Propargylation of Aromatic Compounds with Propargylic Alcoholsp. 233
7.3.1 Propargylation of Heteroaromatic and Aromatic Compounds with Propargylic Alcoholsp. 233
7.3.2 Cycloaddition between Propargylic Alcohols and Phenol and Naphthol Derivativesp. 234
7.4 Carbon-Carbon Bond Formation via Allenylidene-Ene Reactionsp. 236
7.5 Reductive Coupling Reaction via Hydroboration of Allenylidene Intermediatesp. 238
7.6 Selective Preparation of Conjugated Enynesp. 239
7.7 Preparation of Dicationic Chalcogenolate-Bridged Diruthenium Complexes and Their Dual Catalytic Activityp. 241
7.8 Other Catalytic Reactions via Allenylidene Complexes as Key Intermediatesp. 243
7.9 Conclusionp. 246
Referencesp. 247
8 Ruthenium Allenylidenes and Indenylidenes as Catalysts in Alkene Metathesisp. 251
8.1 Introductionp. 251
8.2 Propargyl Derivatives as Alkene Metathesis Initiator Precursors: Allenylidenes, Indenylidenes and Alkenylalkylidenesp. 252
8.2.1 Allenylidene-Ruthenium Complexes as Alkene Metathesis Catalyst Precursors: the First Evidencep. 252
8.2.2 Allenylidene-Ruthenium Complexes in RCM, Enyne Metathesis and ROMPp. 254
8.2.2.1 RCM Reactionsp. 254
8.2.2.2 Enyne Metathesisp. 254
8.2.2.3 ROMP Promoted by Allenylidene Complexesp. 255
8.2.3 Indenylidene-Ruthenium Complexes: the Alkene Metathesis Catalytic Species from Allenylidene Ruthenium Complexesp. 256
8.2.3.1 The First Evidencep. 256
8.2.3.2 The Intramolecular Allenylidene to Indenylidene Rearrangement Demonstrationp. 259
8.2.3.3 Applications of Isolated Indenylidene-Ruthenium Complexes in ROMPp. 261
8.2.3.4 Indenylidene-Ruthenium(arene) Catalyst in Diene and Enyne RCMp. 262
8.2.4 Propargylic Ethers as Alkene Metathesis Initiator Precursors: Generation of Alkenyl Alkylidene-Ruthenium Catalystsp. 262
8.3 Indenylidene-Ruthenium Catalysts in Alkene Metathesisp. 265
8.3.1 Preparation of Indenylidene-Ruthenium Catalystsp. 265
8.3.2 Ruthenium Indenylidene Complexes in Alkene Metathesisp. 268
8.3.3 Polymerization with Ruthenium Indenylidene Complexesp. 271
8.3.4 Other Catalytic Reactions Promoted by Indenylidenesp. 273
8.4 Conclusionp. 274
Referencesp. 274
9 Rhodium and Group 9-11 Metal Vinylidenes in Catalysisp. 279
9.1 Introductionp. 279
9.2 Rhodium and Iridium Vinylidenes in Catalysisp. 280
9.2.1 Introductionp. 280
9.2.2 Carbocyclization/Pericyclic Reactionsp. 281
9.2.3 Anti-Markovnikov Hydrofunctionalizationp. 288
9.2.4 Multi-Component Couplingp. 294
9.3 Rhodium Alkenylidenes in Catalysisp. 299
9.4 Group 10 and 11 Metal Vinylidenes in Catalysisp. 302
9.4.1 Introductionp. 302
9.4.2 Nickel Vinylidenes in Catalysisp. 302
9.4.3 Palladium Vinylidenes in Catalysisp. 303
9.4.4 Platinum Vinylidenes in Catalysisp. 304
9.4.5 Copper Vinylidenes in Catalysisp. 306
9.4.6 Gold Vinylidenes in Catalysisp. 307
9.5 Conclusionp. 310
9.6 Note Added in Proofp. 310
Referencesp. 311
10 Anti-Markovnikov Additions of O-, N-, P-Nucleophiles to Triple Bonds with Ruthenium Catalystsp. 313
10.1 Introductionp. 313
10.2 C-O Bond Formationp. 314
10.2.1 Addition of Carbamic Acids: Synthesis of Vinylic Carbamates and Ureasp. 314
10.2.2 Addition of Carboxylic Acids: Synthesis of Enol Estersp. 316
10.2.3 Addition of Water: Synthesis of Aldehydesp. 318
10.2.4 Addition of Alcohols: Synthesis of Ethers and Ketonesp. 321
10.2.4.1 Intermolecular Addition: Formation of Unsaturated Ethers and Furansp. 321
10.2.4.2 Intermolecular Addition with Rearrangement: Formation of Unsaturated Ketonesp. 321
10.2.4.3 Intramolecular Addition: Formation of Cyclic Enol Ethers and Lactones from Pent-4-yn-1-ols and But-3-yn-1-olsp. 323
10.3 Formation of C-N Bonds via Anti-Markovnikov Addition to Terminal Alkynesp. 325
10.3.1 Addition of Amides to Terminal Alkynesp. 325
10.3.2 Formation of Nitriles via Addition of Hydrazines to Terminal Alkynesp. 325
10.4 Hydrophosphination: Synthesis of Vinylic Phosphinep. 326
10.5 C-C Bond Formation: Dimerization of Terminal Alkynesp. 327
10.6 Conclusionp. 329
Referencesp. 330
Indexp. 333