Cover image for Compact objects in astrophysics : white dwarfs, neutron stars, and black holes
Title:
Compact objects in astrophysics : white dwarfs, neutron stars, and black holes
Personal Author:
Series:
Astronomy and astrophysics library
Publication Information:
Berlin : Springer, 2007
ISBN:
9783540257707
General Note:
Available online version
Electronic Access:
Fulltext

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010138537 QB843.B55 C35 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Compact objects are an important class of astronomical objects in current research. Supermassive black holes play an important role in the understanding of the formation of galaxies in the early Universe. Old white dwarfs are nowadays used to calibrate the age of the Universe. Mergers of neutron stars and black holes are the sources of intense gravitational waves which will be measured in the next ten years by gravitational wave detectors.

Camenzind's Compact Objects in Astrophysics gives a comprehensive introduction and up-to-date overview about the physical processes behind these objects, covering the field from the beginning to most recent results, including all relevant observations.

After a presentation of the taxonomy of compact objects, the basic principles of general relativity are given. The author then discusses in detail the physics and observations of white dwarfs and neutron stars (including the most recent equations of state for neutron star matter), the gravitational field of rapidly rotating compact objects, rotating black holes (including ray tracing and black hole magnetospheres), gravitational waves, and the new understanding of accretion processes by means of the magnetorotational instability of accretion disks.
This modern treatise of compact object astrophysics uses the 3+1 split approach to Einstein's equations, and to relativistic hydrodynamics and magnetohydrodynamics. In each chapter problems and solutions help deepen the understanding of the subject. Both advanced students and researchers will appreciate this book as an advanced textbook and reference on this fascinating field of astrophysics.


Table of Contents

1 Compact Objects in Astrophysicsp. 1
1.1 Why is Newtonian Gravity Obsolete?p. 1
1.2 Einstein was Skeptical about the Existence of Black Holesp. 3
1.3 Subrahmanyan Chandrasekhar and Compact Objectsp. 4
1.4 Classes of Compact Objectsp. 5
1.4.1 White Dwarfs and Neutron Starsp. 8
1.4.2 Compact X-Ray Sourcesp. 9
1.4.3 Radio Pulsarsp. 11
1.5 Supermassive Black Holes in Galactic Centersp. 16
1.6 Gamma-Ray Burstersp. 19
Problemsp. 25
2 Gravity of Compact Objectsp. 27
2.1 Geometric Concepts and General Relativityp. 27
2.2 The Basic Principles of General Relativityp. 29
2.2.1 Einstein's Equivalence Principle and Metricityp. 29
2.2.2 Metric Theories of Gravityp. 33
2.3 Basic Calculus on Manifoldsp. 37
2.3.1 Tensors and Forms on Manifoldsp. 37
2.3.2 The Metric Field and Pseudo-Riemannian Manifoldsp. 42
2.3.3 The Calculus of Forms on Lorentzian Manifoldsp. 44
2.4 Affine Connection and Covariant Derivativep. 47
2.4.1 Affine Connectionp. 47
2.4.2 Covariant Derivative of Vector Fieldsp. 47
2.4.3 Covariant Derivative for Tensor Fieldsp. 48
2.4.4 Parallel Transport and Metric Connectionp. 50
2.4.5 Metric Connectionp. 52
2.4.6 Divergence of Vector Fieldsp. 55
2.5 Curvature of Pseudo-Riemannian Manifoldsp. 56
2.5.1 Mathematical Definition of Torsion and Curvaturep. 57
2.5.2 Bianchi Identities for Metric Connectionp. 58
2.5.3 Ricci, Weyl and Einstein Tensorp. 60
2.5.4 Cartan's Structure Equationsp. 61
2.6 Gravity is a Lorentzian Connection on Spacetimep. 65
2.6.1 The Four Key Principles of General Relativityp. 65
2.6.2 The Hilbert Action and Einstein's Field Equationsp. 68
2.6.3 On the Cosmological Constantp. 69
2.6.4 Limits of General Relativityp. 71
2.7 Gravitational Wavesp. 73
2.7.1 The Geodesic Deviation - Relativistic Tidal Forcesp. 73
2.7.2 Gravity Wave Experimentsp. 74
2.7.3 The Nature of Gravitational Wavesp. 76
2.7.4 Degrees of Freedomp. 79
2.7.5 Gravitational Wave Solutionsp. 83
2.7.6 The Quadrupole Formulap. 87
2.8 3+1 Split of Einstein's Equationsp. 91
2.8.1 Induced Spatial Metric and Extrinsic Curvaturep. 92
2.8.2 Hypersurface Embeddingp. 93
2.8.3 Split of Affine Connection and Curvaturep. 95
2.8.4 Split of Einstein's Equationsp. 98
2.8.5 Black Hole Simulations and Gravitational Wavesp. 100
Problemsp. 101
3 Matter Models for Compact Objectsp. 105
3.1 General Relativistic Hydrodynamicsp. 105
3.1.1 Relativistic Plasma Equationsp. 106
3.1.2 On Numerics of Hydrodynamicsp. 110
3.2 The Boltzmann Equation in GRp. 113
3.2.1 The Geodesics Spray on the Cotangent Bundlep. 113
3.2.2 Particle Number Current and Energy-Momentum Tensorp. 116
3.2.3 The Relativistic Boltzmann Equationp. 117
3.2.4 Liouville Operator in 3+1 Splitp. 118
3.2.5 Transformation into the Local Rest Framep. 119
Problemsp. 120
4 Relativistic Stellar Structurep. 123
4.1 Spacetime of Relativistic Starsp. 123
4.2 Derivation of the TOV Equationsp. 125
4.2.1 The Curvature of Static Spacetimesp. 125
4.2.2 Matter in the Interiorp. 127
4.2.3 The Exterior Schwarzschild Solutionp. 130
4.2.4 Stable Branches for Degenerate Starsp. 131
4.2.5 Metric for Relativistic Starsp. 131
4.3 A Variational Principle for the Stellar Structurep. 132
Problemsp. 134
5 White Dwarfsp. 137
5.1 Observations of Isolated White Dwarfsp. 138
5.1.1 Sirius Bp. 138
5.1.2 Field White Dwarfs and Classificationp. 139
5.1.3 White Dwarfs in Globular Clustersp. 143
5.1.4 Magnetic White Dwarfsp. 143
5.1.5 Ultracool White Dwarfs as Cosmochronometersp. 145
5.2 What is Inside a White Dwarf?p. 151
5.3 Equation of State below the Neutron Drip Densityp. 153
5.4 Structure of White Dwarfs and the Chandrasekhar Massp. 159
5.4.1 Polytropic Approximationp. 160
5.4.2 Beyond the Chandrasekhar Treatmentp. 162
5.4.3 Comparison with Observationsp. 162
5.5 The Relativistic Instability of White Dwarf Starsp. 167
5.5.1 Necessary Condition for Stabilityp. 168
5.5.2 The Total Energy in the Post-Newtonian Limitp. 169
5.5.3 GR White Dwarf Instabilityp. 171
5.6 Cooling White Dwarfsp. 174
5.6.1 Structure of the Surface Layersp. 175
5.6.2 Cooling Curves and Crystallizationp. 177
5.6.3 Testing WD Crystallization Theoryp. 179
5.7 White Dwarfs in Binary Systemsp. 180
Problemsp. 185
6 Neutron Starsp. 187
6.1 The Structure of a Neutron Starp. 188
6.2 Equations of State beyond Neutron Dripp. 189
6.2.1 From Neutron Drip to Saturationp. 190
6.2.2 Nuclear EoS for Dense Neutron Matterp. 199
6.2.3 Relativistic Mean Field Theory above Saturationp. 206
6.2.4 Analytical Fits to EoSp. 216
6.3 Neutron Star Modelsp. 219
6.3.1 Hadronic Modelsp. 219
6.3.2 Quark Matter Coresp. 224
6.3.3 Grand Canonical Potential for Quark Matterp. 231
6.3.4 Strange Quark Starsp. 241
6.3.5 The Structure of Massive Neutron Starsp. 242
6.4 Neutron Stars in Close Binary Systemsp. 244
6.4.1 Post-Newtonian Potentials for Many-Body Systemsp. 244
6.4.2 Periastron Shift in Two-Body Systemsp. 248
6.4.3 The Shapiro Time Delay in a Binary Systemp. 250
6.4.4 Decay of Binary Orbits due to Gravitational Radiationp. 251
6.5 Masses of Neutron Stars from Radio Pulsar Timingp. 255
6.5.1 What is Pulsar Timing?p. 255
6.5.2 The Timing Formulap. 259
6.5.3 Timing of the Binary System PSR B1913+16p. 263
6.5.4 Masses of Companion Starsp. 264
6.5.5 The Double Pulsar System PSR 0737-3039A+Bp. 265
6.6 Neutron Stars in our Galaxyp. 269
6.6.1 100 Million Neutron Stars in the Galaxyp. 269
6.6.2 Thermal Emission from Isolated Neutron Starsp. 272
6.6.3 Rotation-Powered Pulsarsp. 284
6.6.4 Accretion-Powered Neutron Stars and the Mass-Radius Relationp. 294
Problemsp. 303
7 Rapidly Rotating Neutron Starsp. 307
7.1 Spacetime of Stationary and Axisymmetric Rotating Bodiesp. 308
7.1.1 Physical Interpretation of the Metricp. 309
7.1.2 Geodetic and Lense-Thirring Precessionp. 312
7.1.3 On General 3+1 Split of Spacetimep. 315
7.2 Einstein's Field Equations for Rotating Objectsp. 317
7.2.1 Ricci Tensors of Time-Slicesp. 318
7.2.2 Extrinsic Curvature and 4D Ricci Tensorsp. 319
7.2.3 3+1 Split of Einstein's Equationsp. 320
7.3 Stellar Structure Equations in Isotropic Gaugep. 321
7.3.1 The Isotropic Gaugep. 321
7.3.2 Structure Equations for Rotating Starsp. 322
7.3.3 Mechanical Equilibrium and Effective Potentialp. 324
7.3.4 Stellar Parametersp. 326
7.4 The Slow-Rotation Approximationp. 332
7.5 Numerical Integration of the Stellar Structure Equationsp. 335
7.5.1 Comparison of Numerical Codesp. 337
7.5.2 Properties of Rotating Equilibrium Stellar Structuresp. 338
7.6 Towards Analytical Vacuum Solutions for Rotating Neutron Starsp. 342
7.6.1 Weyl-Papapetrou Formp. 342
7.6.2 Ernst Equationsp. 343
7.6.3 Manko's Solutionp. 345
7.7 On Oscillation and Formation of Rotating Neutron Starsp. 350
Problemsp. 353
8 Black Holesp. 355
8.1 The Schwarzschild Black Holep. 355
8.1.1 Tortoise Coordinates and Null Conesp. 356
8.1.2 Roads towards Black Hole Formationp. 358
8.1.3 The Kruskal Extensionp. 359
8.1.4 Penrose Diagram - the Conformal Structure of Infinityp. 363
8.2 Geodetic Motions in Schwarzschild Spacetimep. 369
8.2.1 A Lagrangianp. 369
8.2.2 The Effective Potential for Equatorial Motionp. 371
8.2.3 Orbital Equation and Bound Orbits in Schwarzschild Spacetimep. 373
8.3 The Kerr Black Holep. 378
8.3.1 Kerr Black Hole in Boyer-Lindquist Coordinatesp. 379
8.3.2 A Short Derivation of the Kerr Solutionp. 379
8.3.3 The Weyl-Papapetrou Form of the Kerr Metricp. 384
8.3.4 Uniqueness of the Kerr Solutionp. 385
8.3.5 Global Properties of the Ken Metricp. 386
8.3.6 On the Conformal Structure of the Kerr Solutionp. 393
8.3.7 Ernst's Equations for the Kerr Geometryp. 394
8.3.8 The Kerr-Schild Metric and Two-Black-Hole Statesp. 395
8.4 Rotational Energy and the Four Laws of Black Hole Evolutionp. 399
8.4.1 Surface Gravity and Angular Velocity of the Horizonp. 400
8.4.2 First Law of Black Hole Dynamicsp. 402
8.4.3 Rotational Energy of Astrophysical Black Holesp. 405
8.4.4 On the Second and Third Laws of Black Hole Dynamicsp. 406
8.5 Time Evolution of Black Holesp. 408
8.5.1 Quasistationary Evolution of Accreting Black Holesp. 408
8.5.2 Merging of Black Holesp. 411
8.6 Geodesics in the Kerr Geometryp. 412
8.6.1 Direct Integration of Geodesics Equationsp. 414
8.6.2 Geodesies in the Equatorial Planep. 416
8.6.3 Geodesics Including Lateral Motionp. 424
8.6.4 Null Geodesics and Ray-Tracing in Kerr Geometryp. 431
8.7 Dark Energy Starsp. 442
8.7.1 Why Dark energy Stars?p. 442
8.7.2 Structure of Gravastarsp. 443
8.7.3 The Necessity of an Anisotropic Crustp. 445
Problemsp. 446
9 Astrophysical Black Holesp. 449
9.1 Classes of Astrophysical Black Holesp. 450
9.2 Measuring Black Hole Massesp. 451
9.2.1 BHs in X-Ray Binariesp. 451
9.2.2 Intermediate-Mass Black Holesp. 456
9.2.3 Supermassive Black Holes in Nearby Galaxiesp. 456
9.2.4 Black Holes in Quasarsp. 468
9.3 Estimating Black Hole Spinp. 470
9.3.1 Black Hole Spin and Radio Galaxiesp. 471
9.3.2 Spectral Fitting of Accretion Disksp. 471
9.3.3 Relativistic Iron Linesp. 472
9.3.4 Quasiperiodic Oscillationsp. 472
9.4 Black Holes and Galaxy Formationp. 472
9.5 Black Hole Magnetospheresp. 473
9.5.1 The 3+1 Formalism for Maxwell's Equationsp. 474
9.5.2 Plasma Equations in the 3+1 Splitp. 478
9.5.3 Time Evolution of Magnetic and Current Flux in Turbulent Disksp. 480
9.5.4 Stationary Magnetospheres on Kerr Black Holesp. 486
9.5.5 Relaxation of Black Hole Magnetospheres and the Blandford-Znajek Processp. 499
9.6 Magnetic Spin-Down of Rotating Black Holesp. 509
Problemsp. 511
10 Physics of Accretion Flows around Compact Objectsp. 513
10.1 Angular Momentum Transportp. 514
10.2 Magnetohydrodynamics for Accretion Disksp. 517
10.2.1 Equations of Magnetohydrodynamicsp. 517
10.2.2 Time and Space Discretizationp. 523
10.2.3 MRI Driven Turbulence in Disksp. 525
10.2.4 Two-Temperature Plasmas and Radiation Pressure in Accretion Disksp. 533
10.3 States of Turbulent Accretion Disksp. 537
10.3.1 Turbulent Angular Momentum Transport in Accretion Disksp. 538
10.3.2 Truncated Accretion and Standard Disk Models in IDp. 540
10.3.3 Standard Thin Disk Solutions (SSD)p. 545
10.3.4 Advection-Dominated Flows (ADAF)p. 551
10.3.5 Super-Eddington Accretionp. 552
10.3.6 Unified Models of Disk Accretionp. 553
10.3.7 Fundamental Time-Scales for Accreting Black Holesp. 555
10.4 Relativistic MHD - Turbulent Accretion onto Black Holesp. 558
10.4.1 From SRMHD to GRMHDp. 558
10.4.2 The Equations for GRMHDp. 559
10.4.3 Nonradiative Accretion onto Rotating Black Holesp. 563
10.5 Jets and the Ergospherep. 565
10.5.1 Jets as Outflows from the Ergospheric Regionp. 566
10.5.2 From the Ergosphere to the Cluster Gasp. 572
Problemsp. 575
11 Epilogue and Future Prospectsp. 579
Astrophysical Constants and Symbolsp. 587
SLy4 Equation of State for Neutron Star Matterp. 591
3+1 Split of Spacetime Curvaturep. 595
C.1 Gauss Decompositionp. 595
C.2 Codazzi-Mainardi Equationsp. 596
3+1 Split of Rotating Neutron Star Geometryp. 599
D.1 The 3+1 Split of the Connectionp. 599
D.2 The Curvature of Time Slicesp. 601
Equations of GRMHDp. 605
E.1 Electromagnetic Fieldsp. 605
E.2 Conservative Formulation of GRMHDp. 607
E.3 Numerical Schemesp. 609
Solutionsp. 613
Glossaryp. 641
Referencesp. 657
Indexp. 675