Cover image for Deploying IPv6 in 3GPP networks : evolving mobile broadband from 2G to LTE and beyond
Title:
Deploying IPv6 in 3GPP networks : evolving mobile broadband from 2G to LTE and beyond
Personal Author:
Publication Information:
Chichester, West Sussex : John Wiley & Sons, 2013
Physical Description:
xli, 356 p. : ill. ; 25 cm.
ISBN:
9781118398296

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010323171 TK5103.48325 K36 2013 Open Access Book Book
Searching...

On Order

Summary

Summary

Deploying IPv6 in 3GPP Networks - Evolving Mobile Broadband from 2G to LTE and Beyond

A practical guide enabling mobile operators to deploy IPv6 with confidence

The most widely used cellular mobile broadband network technology is based on the 3GPP standards. The history and background of the 3GPP technology is in the Global Mobile Service (GSM) technology and the work done in European Telecommunications Standards Institute (ETSI). This primary voice service network has evolved to be the dominant mobile Internet access technology.

Deploying IPv6 in 3GPP Networks covers how Internet Protocol version 6 (IPv6) is currently defined in the industry standards for cellular mobile broadband, why and how this route was taken in the technology, and what is the current reality of the deployment. Furthermore, it offers the authors' views on how some possible IPv6 related advances 3GPP networks may be improved during the coming years. It gives guidance how to implement and deploy IPv6 correctly in the Third Generation Partnership Project (3GPP) mobile broadband environment, and what issues one may face when doing so. The book covers 3GPP technologies from 2G to LTE, and offers some ideas for the future.

Key features

written by highly respected and experienced authors from the IPv6 / mobile world Provides an explanation of the technical background for some not-so-obvious design choices, what to concentrate on, and what transition strategies should be used by the vendors and the operators Offers a useful reference guide for operators and vendors entering into IPv6 business


Author Notes

Jouni Korhonen , formerly Nokia Siemens Networks, now Renesas Mobile, Finland
Teemu Savolainen , Nokia Research Center, Finland
Jonne Soininen , Renesas Mobile, Finland


Table of Contents

Forewordp. xvii
Prefacep. xix
Acknowledgmentsp. xxi
Acronymsp. xxiii
Glossaryp. xxxiii
1 Introductionp. 1
1.1 Introduction to Internet and the Internet Protocolp. 2
1.2 Internet Principlesp. 2
1.3 The Internet Protocolp. 4
1.3.1 Networks of Networksp. 6
1.3.2 Routing and Forwardingp. 7
1.4 Internet Protocol Addressesp. 9
1.4.1 IPv4 Addressesp. 9
1.4.2 IPv6 Addressesp. 11
1.5 Transport Protocolsp. 12
1.5.1 User Datagram Protocolp. 13
1.5.2 Transmission Control Protocolp. 13
1.5.3 Port Numbers and Servicesp. 14
1.6 Domain Name Servicep. 14
1.6.1 DNS Structurep. 14
1.6.2 DNS Operationp. 15
1.6.3 Top Level Domainp. 16
1.6.4 Internationalized Domain Namesp. 17
1.7 IPv4 Address Exhaustionp. 17
1.7.1 IP Address Allocationp. 18
7.7.2 History of IPv4 Address Exhaustionp. 19
1.8 IPv6 History Thus Farp. 21
1.8.1 IPv6 Technology Maturityp. 21
1.8.2 IPv6 Network Deploymentsp. 22
1.9 Ongoing Cellular Deploymentsp. 23
1.10 Chapter Summaryp. 24
1.11 Suggested Readingp. 24
Referencesp. 24
2 Basics of the 3GPP Technologiesp. 27
2.1 Standardization and Specificationsp. 27
2.1.1 3GPP Standardization Processp. 28
2.1.2 IETF Standardization Processp. 31
2.1.3 Other Important Organizations in the 3GPP-Ecosystemp. 33
2.2 Introduction to 3GPP Network Architecture and Protocolsp. 34
2.2.1 GSM Systemp. 34
2.2.2 General Packet Radio Servicep. 36
2.2.3 Evolved Packet Systemp. 41
2.2.4 Control and User Planes, and Transport and User Layer Separationp. 44
2.3 3GPP Protocolsp. 45
2.3.1 Control-Plane Protocolsp. 46
2.3.2 User-Plane Protocolsp. 53
2.3.3 GPRS Tunneling Protocol Versionsp. 55
2.3.4 PMIP Based EPS Architecturep. 56
2.4 Mobility and Roamingp. 58
2.4.1 Mobility Managementp. 59
2.4.2 Roamingp. 60
2.4.3 Mobility Management Beyond 3GPPp. 60
2.5 Central Concepts for IP Connectivityp. 61
2.5.1 PDP Contexts and EPS Bearersp. 61
2.5.2 Access Point Namep. 63
2.5.3 Traffic Flow Templatep. 64
2.5.4 3GPP Link Model Principlesp. 65
2.5.5 Multiple Packet Data Network Connectionsp. 67
2.6 User Equipment 68
2.6.1 Traditional 3GPP UE Modelp. 69
2.6.2 Split-UEp. 69
2.7 Subscription Management Databases and Other Backend Systemsp. 70
2.7.1 Home Location Register and Authentication Centerp. 70
2.7.2 Home Subscriber Serverp. 71
2.7.3 Equipment Identity Registerp. 71
2.7.4 Other Backend Systemsp. 71
2.8 End-to-end View from the User Equipment to the Internetp. 72
2.8.1 GPRSp. 72
2.8.2 EPSp. 73
2.9 Chapter Summaryp. 75
2.10 Suggested Readingp. 75
Referencesp. 76
3 Introduction to IPv6p. 79
3.1 IPv6 Addressing Architecturep. 80
3.1.1 IPv6 Address Formatp. 80
3.1.2 IPv6 Address Typesp. 81
3.1.3 IPv6 Address Scopesp. 81
3.1.4 IPv6 Addressing Zonesp. 82
3.1.5 IPv6 Addresses on Network Interfacesp. 82
3.1.6 Interface Identifier and the Modified EUI-64p. 83
3.1.7 IPv6 Address Space Allocationsp. 84
3.1.8 Special IPv6 Address Formatsp. 84
3.1.9 Textual Presentations of IPv6 Addressesp. 86
3.2 IPv6 Packet Header Structure and Extensibilityp. 87
3.2.1 Traffic Class and Flow Labelp. 88
3.2.2 IPv6 Extension Headersp. 90
3.2.3 MTU and Fragmentationp. 92
3.2.4 Multicastp. 94
3.3 Internet Control Message Protocol Version 6p. 97
3.3.1 Error Messagesp. 98
3.3.2 Informational Messagesp. 100
3.4 Neighbor Discovery Protocolp. 101
3.4.1 Router Discoveryp. 101
3.4.2 Parameter Discoveryp. 102
3.4.3 On-link Determinationp. 104
3.4.4 Link-layer Address Resolutionp. 104
3.4.5 Neighbor Unreachability Detectionp. 105
3.4.6 Next-hop Determinationp. 106
3.4.7 Duplicate Address Detectionp. 106
3.4.8 Redirectp. 107
3.4.9 Secure Neighbor Discoveryp. 107
3.4.10 Neighbor Discovery Proxiesp. 108
3.5 Address Configuration and Selection Approachesp. 109
3.5.1 Stateless Address Autoconfigurationp. 110
3.5.2 Dynamic Host Configuration Protocol Version 6p. 112
3.5.3 IKEv2p. 117
3.5.4 Address Selectionp. 118
3.5.5 Privacy and Cryptographically Generated Addressesp. 120
3.5.6 Router Selectionp. 121
3.6 IPv6 Link Types and Modelsp. 122
3.6.1 IPv6 over Point-to-point Linksp. 123
3.6.2 IPv6 over Shared Mediap. 124
3.6.3 Link Numberingp. 125
3.6.4 Bridging of Link Typesp. 126
3.7 Mobile IPp. 126
3.7.1 Detecting Network Attachmentp. 126
3.7.2 Host-based Mobile IPp. 127
3.7.3 Network-based Mobile IPp. 128
3.8 IP Securityp. 130
3.8.1 Security Protocolsp. 131
3.8.2 Security Associationsp. 131
3.8.3 Key Managementp. 132
3.8.4 Cryptographic Algorithmsp. 132
3.8.5 MOBIKEp. 132
3.9 Application Programming Interfacesp. 133
3.9.1 Socket APIsp. 133
3.9.2 Address Family Agnostic APIsp. 133
3.9.3 IP Address Literals and Unique Resource Identifiersp. 134
3.9.4 Happy Eyeballsp. 134
3.10 Implications of IPv6 for Other Protocolsp. 136
3.10.1 Transport Layer Protocolsp. 136
3.10.2 Domain Name Systemp. 137
3.10.3 Applicationsp. 141
3.10.4 Internet Routingp. 141
3.10.5 Management Information Basep. 143
3.11 Validation and Certificationp. 144
3.11.1 Test Suitesp. 144
3.11.2 IPv6 Ready Logop. 144
3.12 Example IPv6 Packet Flowsp. 145
3.12.1 IPv6 on Ethernetp. 146
3.12.2 IPv6 with DNS and TCPp. 153
3.13 Chapter Summaryp. 155
Referencesp. 156
4 IPv6 in 3GPP Networksp. 163
4.1 PDN Connectivity Servicep. 163
4.1.1 Bearer Conceptp. 164
4.7.2 PDP and PDN Typesp. 166
4.1.3 Link Models in 3GPPp. 168
4.2 End User IPv6 Service Impact on the 3GPP Systemp. 172
4.2.7 User, Control and Transport Planesp. 172
4.2.2 Affected Networking Elementsp. 173
4.2.3 Charging and Billingp. 180
4.2.4 External PDN Access and the (S)Gi Interfacep. 182
4.2.5 Roaming Challengesp. 187
4.3 End User IPv6 Service Impact on GTP and PMIPv6 Protocolsp. 189
4.3.1 GTP Control Plane Version 1p. 189
4.3.2 GTP Control Plane Version 2p. 191
4.3.3 GTP User Planep. 194
4.3.4 PMIPv6p. 194
4.4 IP Address Assignment, Configuration, and Managementp. 195
4.4.1 Addressing Assumptionsp. 195
4.4.2 Stateless IPv6 Address Autoconfigurationp. 197
4.4.3 Stateful IPv6 Address Configurationp. 200
4.4.4 Deferred Address Allocationp. 200
4.4.5 Static IPv6 Addressingp. 201
4.4.6 IPv6 Prefix Delegationp. 204
4.4.7 NAS Protocol Signaling and PCO Optionsp. 207
4.4.8 Initial E-UTRAN Attach Example with IPv4 and IPv6 Address Configurationp. 211
4.5 Bearer Establishment and Fallback Scenariosp. 214
4.5.1 Initial Connection Establishmentp. 214
4.5.2 Backward Compatibility with Earlier Releasesp. 215
4.5.3 Dual Address Bearer Flagp. 215
4.5.4 Requested PDN Type Handling in a PGWp. 216
4.5.5 Fallback Scenarios and Rulesp. 217
4.5.6 Inter-RAT Handovers and Inter-SGSN Routing Area Updatesp. 218
4.6 Signaling Interfacesp. 219
4.6.1 IPv6 as Transportp. 219
4.6.2 IPv6 in Information Element Levelp. 219
4.7 User Equipment Specific Considerationsp. 220
4.7.1 IPv6 and Impacted Layersp. 220
4.7.2 Required RFCs for Host UEsp. 222
4.7.3 DNS Issuesp. 223
4.7.4 Provisioningp. 224
4.7.5 IPv6 Tetheringp. 225
4.7.6 IPv6 Application Supportp. 227
4.8 Multicastp. 227
4.9 Known IPv6 Issues and Anomaliesp. 228
4.9.1 IPv6 Neighbor Discovery Considerationsp. 229
4.9.2 PDN Connection Model and Multiple IPv6 Prefixesp. 233
4.10 IPv6 Specific Security Considerationsp. 233
4.10.1 IPv6 Addressing Threatsp. 234
4.10.2 IPv6 First-hop Securityp. 236
4.10.3 IPv6 Extension Header Exploitsp. 237
4.11 Chapter Summaryp. 239
Referencesp. 240
5 IPv6 Transition Mechanisms for 3GPP Networksp. 248
5.1 Motivation for Transition Mechanismsp. 248
5.7.7 Phasing the Transitionp. 250
5.2 Technology Overviewp. 251
5.2.7 Translationp. 251
5.2.2 Encapsulationp. 253
5.2.3 Mesh or Hub-and-spokep. 254
5.2.4 Scalability Concernsp. 255
5.3 Transition Toolboxp. 255
5.3.1 Transition Solutions Not Includedp. 256
5.3.2 Dual-stackp. 257
5.3.3 NAT64 and DNS64p. 258
5.3.4 464XLATp. 269
5.3.5 Bump-In-the-Hostp. 271
5.3.6 Mapping Address and Port Numberp. 272
5.3.7 Other Tunneling or Translation Based Transition Mechanismsp. 275
5.4 Transition Scenarios for 3GPPp. 277
5.4.1 Transition Scenario Evolutionp. 278
5.4.2 Dual-stackp. 280
5.4.3 IPv6-onlyp. 281
5.4.4 Double Translationp. 281
5.5 Transition Impacts on 3GPP Architecturep. 282
5.5.1 Transition Impact on the Supporting Infrastructurep. 282
5.5.2 IP Network Support Systemsp. 283
5.5.3 Tools to Divide Subscribers Per IP Capabilityp. 285
5.5.4 Translation Implicationsp. 286
5.5.5 Transition Support in the Transport Planep. 287
5.5.6 Roamingp. 287
5.5.7 Impact of Delayed Transition to IPv6p. 288
5.6 Transitioning to IPv6p. 289
5.6.1 Application Developer's Transition Planp. 290
5.6.2 Phone Vendor's Transition Planp. 290
5.6.3 Network Operator's Transition Checklistp. 290
5.7 Chapter Summaryp. 292
Referencesp. 293
6 Future of IPv6 in 3GPP Networksp. 296
6.1 IPv6-based Traffic Offloading Solutionsp. 296
6.1.1 Motivations in Cellular Networksp. 297
6.1.2 Benefits of IPv6-based Offloading Approachesp. 299
6.1.3 IP-friendly Offloading Solutionsp. 299
6.1.4 Concluding Remarksp. 303
6.2 Evolving 3GPP Bearers to Multiple Prefixes and Next-hop Routersp. 304
6.2.1 Background and Motivationp. 304
6.2.2 Multi-prefix Bearer Solution Proposalp. 305
6.2.3 Overall Impact Analysisp. 311
6.2.4 Open Issues and Future Workp. 313
6.3 LTE as the Uplink Access for Home Networksp. 313
6.3.1 Homenet at IETFp. 313
6.3.2 Homenet and 3GPP Architecturep. 314
6.3.3 Additional 3GPP Deployment Optionsp. 315
6.4 Port Control Protocolp. 316
6.4.1 Deployment Scenariosp. 317
6.4.2 Protocol Featuresp. 318
6.4.3 PCP Server Discoveryp. 319
6.4.4 Protocol Messagesp. 319
6.4.5 Cascaded NATsp. 320
6.4.6 Relation to IPv6 Transitionp. 320
6.5 Internet of Thingsp. 321
6.5.1 Typical Use Casesp. 321
6.5.2 Standardization Organizations Working with IoTp. 322
6.5.3 IoT Domain from the 3GPP Point of Viewp. 327
6.5.4 Implications to UEsp. 328
6.5.5 Implications to 3GPP Networksp. 329
6.6 Chapter Summaryp. 331
Referencesp. 332
Indexp. 337