Cover image for Polarimetric radar imaging : from basics to applications
Title:
Polarimetric radar imaging : from basics to applications
Personal Author:
Series:
Optical science and engineering ; 143
Publication Information:
London, UK : CRC Pr., 2009
Physical Description:
xxiv, 398 p. : ill. (some col.) ; 25 cm.
ISBN:
9781420054972
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010197629 TK6580 L44 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

The recent launches of three fully polarimetric synthetic aperture radar (PolSAR) satellites have shown that polarimetric radar imaging can provide abundant data on the Earth's environment, such as biomass and forest height estimation, snow cover mapping, glacier monitoring, and damage assessment. Written by two of the most recognized leaders in this field, Polarimetric Radar Imaging: From Basics to Applications presents polarimetric radar imaging and processing techniques and shows how to develop remote sensing applications using PolSAR imaging radar.

The book provides a substantial and balanced introduction to the basic theory and advanced concepts of polarimetric scattering mechanisms, speckle statistics and speckle filtering, polarimetric information analysis and extraction techniques, and applications typical to radar polarimetric remote sensing. It explains the importance of wave polarization theory and the speckle phenomenon in the information retrieval problem of microwave imaging and inverse scattering. The authors demonstrate how to devise intelligent information extraction algorithms for remote sensing applications. They also describe more advanced polarimetric analysis techniques for polarimetric target decompositions, polarization orientation effects, polarimetric scattering modeling, speckle filtering, terrain and forest classification, manmade target analysis, and PolSAR interferometry.

With sample PolSAR data sets and software available for download, this self-contained, hands-on book encourages you to analyze space-borne and airborne PolSAR and polarimetric interferometric SAR (Pol-InSAR) data and then develop applications using this data.


Author Notes

Lee, Jong-Sen; Pottier, Eric


Table of Contents

Forewordp. xix
Acknowledgementsp. xxi
Authorsp. xxiii
Chapter 1 Overview of Polarimetric Radar Imagingp. 1
1.1 Brief History of Polarimetric Radar Imagingp. 1
1.1.1 Introductionp. 1
1.1.2 Development of Imaging Radarp. 2
1.1.3 Development of Polarimetric Radar Imagingp. 2
1.1.4 Education of Polarimetric Radar Imagingp. 4
1.2 SAR Image Formation: Summaryp. 5
1.2.1 Introductionp. 5
1.2.2 SAR Geometric Configurationp. 6
1.2.3 SAR Spatial Resolutionp. 8
1.2.4 SAR Image Processingp. 9
1.2.5 SAR Complex Imagep. 10
1.3 Airborne and Space-Borne Polarimetric SAR Systemsp. 13
1.3.1 Introductionp. 13
1.3.2 Airborne Polarimetric SAR Systemsp. 14
1.3.2.1 AIRSAR (NASA/JPL)p. 14
1.3.2.2 CONVAIR-580 C/X-SAR (CCRS/EC)p. 16
1.3.2.3 EMISAR (DCRS)p. 16
1.3.2.4 E-SAR (DLR)p. 16
1.3.2.5 PI-SAR (JAXA-NICT)p. 17
1.3.2.6 RAMSES (ONERA-DEMR)p. 17
1.3.2.7 SETHI (ONERA-DEMR)p. 18
1.3.3 Space-Borne Polarimetric SAR Systemsp. 19
1.3.3.1 SIR-C/X SAR (NASA/DARA/ASI)p. 19
1.3.3.2 ENVISAT-ASAR (ESA)p. 19
1.3.3.3 ALOS-PALSAR (JAXA/JAROS)p. 20
1.3.3.4 TerraSAR-X (BMBF/DLR/Astrium GmbH)p. 21
1.3.3.5 RADARSAT-2 (CSA/MDA)p. 22
1.4 Description of the Chaptersp. 22
Referencesp. 28
Chapter 2 Electromagnetic Vector Wave and Polarization Descriptorsp. 31
2.1 Monochromatic Electromagnetic Plane Wavep. 31
2.1.1 Equation of Propagationp. 31
2.1.2 Monochromatic Plane Wave Solutionp. 32
2.2 Polarization Ellipsep. 34
2.3 Jones Vectorp. 37
2.3.1 Definitionp. 37
2.3.2 Special Unitary Group SU(2)p. 38
2.3.3 Orthogonal Polarization States and Polarization Basisp. 40
2.3.4 Change of Polarimetric Basisp. 41
2.4 Stokes Vectorp. 43
2.4.1 Real Representation of a Plane Wave Vectorp. 43
2.4.2 Special Unitary Group O(3)p. 46
2.5 Wave Covariance Matrixp. 47
2.5.1 Wave Degree of Polarizationp. 47
2.5.2 Wave Anisotropy and Wave Entropyp. 48
2.5.3 Partially Polarized Wave Dichotomy Theoremp. 49
Referencesp. 51
Chapter 3 Electromagnetic Vector Scattering Operatorsp. 53
3.1 Polarimetric Backscattering Sinclair S Matrixp. 53
3.1.1 Radar Equationp. 53
3.1.2 Scattering Matrixp. 55
3.1.3 Scattering Coordinate Frameworksp. 61
3.2 Scattering Target Vectors ¿ and ¿p. 63
3.2.1 Introductionp. 63
3.2.2 Bistatic Scattering Casep. 63
3.2.3 Monostatic Backscattering Casep. 65
3.3 Polarimetric Coherency T and Covariance C Matricesp. 66
3.3.1 Introductionp. 66
3.3.2 Bistatic Scattering Casep. 66
3.3.3 Monostatic Backscattering Casep. 67
3.3.4 Scattering Symmetry Propertiesp. 69
3.3.5 Eigenvector/Eigenvalues Decompositionp. 72
3.4 Polarimetric Mueller M and Kennaugh K Matricesp. 73
3.4.1 Introductionp. 73
3.4.2 Monostatic Backscattering Casep. 74
3.4.3 Bistatic Scattering Casep. 77
3.5 Change of Polarimetric Basisp. 80
3.5.1 Monostatic Backscattering Matrix Sp. 80
3.5.2 Polarimetric Coherency T Matrixp. 83
3.5.3 Polarimetric Covariance C Matrixp. 84
3.5.4 Polarimetric Kennaugh K Matrixp. 84
3.6 Target Polarimetric Characterizationp. 85
3.6.1 Introductionp. 85
3.6.2 Target Characteristic Polarization Statesp. 87
3.6.2.1 Characteristic Target Polarization States in the Copolar Configurationp. 88
3.6.2.2 Characteristic Polarization States in the Cross-Polar Configurationp. 88
3.6.3 Diagonalization of the Sinclair S Matrixp. 89
3.6.4 Canonical Scattering Mechanismp. 92
3.6.4.1 Sphere, Flat Plate, Trihedralp. 92
3.6.4.2 Horizontal Dipolep. 93
3.6.4.3 Oriented Dipolep. 94
3.6.4.4 Dihedralp. 95
3.6.4.5 Right Helixp. 96
3.6.4.6 Left Helixp. 97
Referencesp. 98
Chapter 4 Polarimetric SAR Speckle Statisticsp. 101
4.1 Fundamental Property of Speckle in SAR Imagesp. 101
4.1.1 Speckle Formationp. 101
4.1.2 Rayleigh Speckle Modelp. 102
4.2 Speckle Statistics for Multilook-Processed SAR Imagesp. 105
4.3 Texture Model and K-Distributionp. 108
4.3.1 Normalized N-Look Intensity K-Distributionp. 108
4.3.2 Normalized N-Look Amplitude K-Distributionp. 109
4.4 Effect of Speckle Spatial Correlationp. 110
4.4.1 Equivalent Number of Looksp. 111
4.5 Polarimetric and Interferometric SAR Speckle Statisticsp. 112
4.5.1 Complex Gaussian and Complex Wishart Distributionp. 112
4.5.2 Monte Carlo Simulation of Polarimetric SAR Datap. 114
4.5.3 Verification of the Simulation Procedurep. 115
4.5.4 Complex Correlation Coefficientp. 115
4.6 Phase Difference Distributions of Single- and Multilook Polarimetric SAR Datap. 116
4.6.1 Alternative Form of Phase Difference Distributionp. 120
4.7 Multilook Product Distributionp. 120
4.8 Joint Distribution of Multilook |Si|2 and |Sj|2p. 121
4.9 Multilook Intensity and Amplitude Ratio Distributionsp. 122
4.10 Verification of Multilook PDFsp. 125
4.11 K-Distribution for Multilook Polarimetric Datap. 130
4.12 Summaryp. 135
Appendix 4.A

p. 136

Appendix 4.B

p. 138

Appendix 4.C

p. 140

Appendix 4.D

p. 140

Referencesp. 141
Chapter 5 Polarimetric SAR Speckle Filteringp. 143
5.1 Introduction to Speckle Filtering of SAR Imageryp. 143
5.1.1 Speckle Noise Modelp. 144
5.1.1.1 Speckle Noise Model for Polarimetric SAR Datap. 146
5.2 Filtering of Single Polarization SAR Datap. 147
5.2.1 Minimum Mean Square Filterp. 149
5.2.1.1 Deficiencies of the Minimum Mean Square Error (MMSE) Filterp. 150
5.2.2 Speckle Filtering with Edge-Aligned Window: Refined Lee Filterp. 150
5.3 Review of Multipolarization Speckle Filtering Algorithmsp. 152
5.3.1 Polarimetric Whitening Filterp. 153
5.3.2 Extension of PWF to Multilook Polarimetric Datap. 156
5.3.3 Optimal Weighting Filterp. 157
5.3.4 Vector Speckle Filteringp. 158
5.4 Polarimetric SAR Speckle Filteringp. 160
5.4.1 Principle of PolSAR Speckle Filteringp. 160
5.4.2 Refined Lee PolSAR Speckle Filterp. 161
5.4.3 Apply Region Growing Technique to PolSAR Speckle Filteringp. 165
5.5 Scattering Model-Based PolSAR Speckle Filterp. 166
5.5.1 Demonstration and Evaluationp. 169
5.5.2 Speckle Reductionp. 170
5.5.3 Preservation of Dominant Scattering Mechanismp. 172
5.5.4 Preservation of Point Target Signaturesp. 174
Referencesp. 175
Chapter 6 Introduction to the Polarimetric Target Decomposition Conceptp. 179
6.1 Introductionp. 179
6.2 Dichotomy of the Kennaugh Matrix Kp. 181
6.2.1 Phenomenological Huynen Decompositionp. 181
6.2.2 Barnes-Holm Decompositionp. 185
6.2.3 Yang Decompositionp. 188
6.2.4 Interpretation of the Target Dichotomy Decompositionp. 191
6.3 Eigenvector-Based Decompositionsp. 193
6.3.1 Cloude Decompositionp. 195
6.3.2 Holm Decompositionsp. 195
6.3.3 van Zyl Decompositionp. 198
6.4 Model-Based Decompositionsp. 200
6.4.1 Freeman-Durden Three-Component Decompositionp. 200
6.4.2 Yamaguchi Four-Component Decompositionp. 206
6.4.3 Freeman Two-Component Decompositionp. 208
6.5 Coherent Decompositionsp. 213
6.5.1 Introductionp. 213
6.5.2 Pauli Decompositionp. 214
6.5.3 Krogager Decompositionp. 215
6.5.4 Cameron Decompositionp. 219
6.5.4.1 Scattering Matrix Coherent Decompositionp. 219
6.5.4.2 Scattering Matrix Classificationp. 221
6.5.5 Polar Decompositionp. 224
Referencesp. 225
Chapter 7 H/A/¿ Polarimetric Decomposition Theoremp. 229
7.1 Introductionp. 229
7.2 Pure Target Casep. 229
7.3 Probabilistic Model for Random Media Scatteringp. 230
7.4 Roll Invariance Propertyp. 232
7.5 Polarimetric Scattering ¿ Parameterp. 234
7.6 Polarimetric Scattering Entropy (H)p. 237
7.7 Polarimetric Scattering Anisotropy (A)p. 237
7.8 Three-Dimensional H/A/¿ Classification Spacep. 239
7.9 New Eigenvalue-Based Parametersp. 247
7.9.1 SERD and DERD Parametersp. 247
7.9.2 Shannon Entropyp. 249
7.9.3 Other Eigenvalue-Based Parametersp. 251
7.9.3.1 Target Randomness Parameterp. 251
7.9.3.2 Polarization Asymmetry and the Polarization Fraction Parametersp. 252
7.9.3.3 Radar Vegetation Index and the Pedestal Height Parametersp. 254
7.9.3.4 Alternative Entropy and Alpha Parameters Derivationp. 255
7.10 Speckle Filtering Effects on H/A/¿p. 257
7.10.1 Entropy (H) Parameterp. 257
7.10.2 Anisotropy (A) Parameterp. 259
7.10.3 Averaged Alpha Angle (¿) Parameterp. 259
7.10.4 Estimation Bias on H/A/¿p. 259
Referencesp. 262
Chapter 8 PolSAR Terrain and Land-Use Classificationp. 265
8.1 Introductionp. 265
8.2 Maximum Likelihood Classifier Based on Complex Gaussian Distributionp. 266
8.3 Complex Wishart Classifier for Multilook PolSAR Datap. 267
8.4 Characteristics of Wishart Distance Measurep. 268
8.5 Supervised Classification Using Wishart Distance Measurep. 271
8.6 Unsupervised Classification Based on Scattering Mechanisms and Wishart Classifierp. 274
8.6.1 Experiment Resultsp. 276
8.6.2 Extension to H/¿/A and Wishart Classifierp. 279
8.7 Scattering Model-Based Unsupervised Classificationp. 281
8.7.1 Experiment Resultsp. 284
8.7.1.1 NASA/JPL AIRSAR San Francisco Imagep. 284
8.7.1.2 DLR E-SAR L-Band Oberpfaffenhofen Imagep. 286
8.7.2 Discussionp. 288
8.8 Quantitative Comparison of Classification Capability: Fully Polarimetric SAR vs. Dual- and Single-Polarization SARp. 291
8.8.1 Supervised Classification Evaluation Based on Maximum Likelihood Classifierp. 292
8.8.1.1 Classification Procedurep. 292
8.8.1.2 Comparison of Crop Classificationp. 293
Referencesp. 299
Chapter 9 Pol-InSAR Forest Mapping and Classificationp. 301
9.1 Introductionp. 301
9.2 Pol-InSAR Scattering Descriptorsp. 303
9.2.1 Polarimetric Interferometric Coherency T6 Matrixp. 303
9.2.2 Complex Polarimetric Interferometric Coherencep. 307
9.2.3 Polarimetric Interferometric Coherence Optimizationp. 308
9.2.4 Polarimetric Interferometric SAR Data Statisticsp. 313
9.3 Forest Mapping and Forest Classificationp. 314
9.3.1 Forested Area Segmentationp. 314
9.3.2 Unsupervised Pol-InSAR Classification of the Volume Classp. 314
9.3.3 Supervised Pol-InSAR Forest Classificationp. 318
Appendix 9.A

p. 320

Derivation of Optimal Coherence Set Statisticsp. 320
Referencesp. 321
Chapter 10 Selected Polarimetric SAR Applicationsp. 323
10.1 Polarimetric Signature Analysis of Man-Made Structuresp. 323
10.1.1 Slant Range of Multiple Bounce Scatteringp. 324
10.1.2 Polarimetric Signature of the Bridge during Constructionp. 325
10.1.3 Polarimetric Signature of the Bridge after Constructionp. 329
10.1.4 Conclusionp. 332
10.2 Polarization Orientation Angle Estimation and Applicationsp. 333
10.2.1 Radar Geometry of Polarization Orientation Anglep. 333
10.2.2 Circular Polarization Covariance Matrixp. 334
10.2.3 Circular Polarization Algorithmp. 336
10.2.4 Discussionp. 339
10.2.5 Orientation Angles Applicationsp. 342
10.3 Ocean Surface Remote Sensing with Polarimetric SARp. 345
10.3.1 Cold Water Filament Detectionp. 345
10.3.2 Ocean Surface Slope Sensingp. 346
10.3.3 Directional Wave Slope Spectra Measurementp. 347
10.4 Ionosphere Faraday Rotation Estimationp. 350
10.4.1 Faraday Rotation Estimationp. 351
10.4.2 Faraday Rotation Angle Estimation from ALOS PALSAR Datap. 353
10.5 Polarimetric SAR Interferometry for Forest Height Estimationp. 354
10.5.1 Problems Associated with Coherence Estimationp. 357
10.5.2 Adaptive Pol-InSAR Speckle Filtering Algorithmp. 358
10.5.3 Demonstration Using E-SAR Glen Affric Pol-InSAR Datap. 358
10.6 Nonstationary Natural Media Analysis from PolSAR Data Using a 2-D Time-Frequency Approachp. 362
10.6.1 Introductionp. 362
10.6.2 Principle of SAR Data Time-Frequency Analysisp. 362
10.6.2.1 Time-Frequency Decompositionp. 362
10.6.2.2 SAR Image Decomposition in Range and Azimuthp. 363
10.6.2.3 Analysis in the Azimuth Directionp. 364
10.6.2.4 Analysis in the Range Directionp. 365
10.6.3 Discrete Time-Frequency Decomposition of Nonstationary Media PolSAR Responsep. 365
10.6.3.1 Anisotropic Polarimetric Behaviorp. 365
10.6.3.2 Decomposition in the Azimuth Directionp. 366
10.6.3.3 Decomposition in the Range Directionp. 368
10.6.4 Nonstationary Media Detection and Analysisp. 369
Referencesp. 375
Appendix A Eigen Characteristics of Hermitian Matrixp. 379
Referencep. 384
Appendix B PolSARpro Software: The Polarimetric SAR Data Processing and Educational Toolboxp. 385
B.1 Introductionp. 385
B.2 Concepts and Principal Objectivesp. 385
B.3 Software Portability and Development Languagesp. 387
B.4 Outlookp. 388
Indexp. 391