Cover image for Nonlinear and hybrid systems in automotive control
Title:
Nonlinear and hybrid systems in automotive control
Publication Information:
London : Springer-Verlag, 2003
Physical Description:
xvii, 440 p. : ill. ; 24 cm.
ISBN:
9780768011371

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010184613 TL272.53 N66 2003 Open Access Book Book
Searching...

On Order

Table of Contents

M. D. Donahue and J. K. HedrickFu-Cheng Wang and M. C. SmithJ. Bengtsson and R. Johansson and A. SjögrenJ. Kalkkuhl and T.A. Johansen and J. LüdemannS. Solyom and A. RantzerK.J. Hunt and Yongji Wang and M. Schinkel and T. Schmitt-HartmannI. Petersen and T. A. Johansen and J. Kalkkuhl and J. LüdemannC. Canudas-de-Wit and P. Tsiotras and X. Claeys and J. Yi and R. HorowitzE. HendricksA. Balluchi and L. Benvenuti and M. D. Di Benedetto and A. L. Sangiovanni-VincentelliD. Förstner and J. LunzeG. Fiengo and L. Glielmo and S. SantiniM. Gäfvert and K.-E. Årzén and B. Bernhardsson and L.M. PedersenP. Tunestål and J.-O. Olsson and B. JohanssonL. Berardi and E. De Santis and M. D. Di Benedetto and G. PolaG. Golo and A. van der Schaft and P. C. Breedveld and B. M. MaschkeS. Pettersson and B. LennartsonW.P.M.H. Heemels and M.K. Çamlibel and A.J. van der Schaft and J. M. Schumacher
1 Implementation of an Active Suspension, Preview Controller for Improved Ride Comfortp. 1
1.1 Introductionp. 2
1.2 Controller Structurep. 3
1.3 Force Tracking Controllerp. 3
1.4 Higher-level Controllersp. 8
1.5 Preview Informationp. 11
1.6 Experimental Resultsp. 13
1.7 Conclusionsp. 15
1.8 Referencesp. 18
1.A HMMWV Equipmentp. 19
1.B Test Trackp. 21
1.C Nomenclaturep. 21
2 Active and Passive Suspension Control for Vehicle Dive and Squatp. 23
2.1 Introductionp. 24
2.2 Limitations Imposed by Passivity in Vehicle Suspension Designp. 24
2.3 Suspension Geometry in the Half-car Trailing-arm Modelp. 27
2.4 Active Suspension Design for Independence of Disturbance Responsesp. 33
2.5 Active Suspension Design for the Trailing-arm Modelp. 36
2.6 Referencesp. 38
3 Modeling of Drivers' Longitudinal Behaviorp. 41
3.1 Introductionp. 42
3.2 Material and Methodsp. 42
3.3 Results and Validationp. 48
3.4 Conclusionp. 52
3.5 Referencesp. 53
4 Nonlinear Adaptive Backstepping with Estimator Resetting using Multiple Observersp. 59
4.1 Introductionp. 60
4.2 Nonlinear Adaptive Backsteppingp. 62
4.3 Stability Analysis of Parameter Resettingp. 65
4.4 Multiple Model Observer (MMO)p. 71
4.5 A Second Order Benchmark Systemp. 76
4.6 Wheel Slip Controlp. 77
4.7 Conclusionsp. 82
4.8 Referencesp. 82
5 ABS Control-A Design Model and Control Structurep. 85
5.1 Introductionp. 86
5.2 The Design Problemp. 87
5.3 The Control Structurep. 90
5.4 Simulation and Experimental Resultsp. 93
5.5 Conclusionp. 95
5.6 Referencesp. 95
6 Controller Design for Hybrid Systems using Simultaneous D-stabilisation and its Application to Anti-lock Braking Systems (ABS)p. 97
6.1 Introductionp. 98
6.2 Constraints for SSP with D-stable Regionsp. 101
6.3 Constraints for SSSP with D-stable Regionsp. 109
6.4 Numerical Solution Techniques for the SSP and SSSPp. 111
6.5 Design Example and Application to ABS Controlp. 114
6.6 Conclusionsp. 119
6.7 Referencesp. 121
7 Wheel Slip Control in ABS Brakes using Gain-scheduled Constrained LQRp. 125
7.1 Introductionp. 126
7.2 Modellingp. 126
7.3 Control Problemp. 130
7.4 Gain-scheduled LQRC Controller Design and Analysisp. 130
7.5 Implementationp. 138
7.6 Experimental Resultsp. 140
7.7 Discussion and Conclusionsp. 140
7.8 Referencesp. 144
7.A Appendix-Details of Proofp. 145
8 Friction Tire/Road Modeling, Estimation and Optimal Braking Controlp. 147
8.1 Introductionp. 148
8.2 Road/Tire Contact Friction Modelsp. 150
8.3 Higher-dimensional Modelsp. 165
8.4 Road/Tire Friction Observersp. 175
8.5 General Observer Designp. 177
8.6 Optimal Brakingp. 184
8.7 Observed-based Emergency Braking Controlp. 195
8.8 Conclusionsp. 205
8.9 Referencesp. 206
9 Nonlinear Observer Control of Internal Combustion Engines with EGRp. 211
9.1 Introductionp. 212
9.2 Torque Control Feedforward Observerp. 212
9.3 Closed-loop Observerp. 217
9.4 Possible Improvementsp. 220
9.5 Conclusionsp. 224
9.6 Nomenclaturep. 225
9.7 Referencesp. 225
10 Idle Speed Control Synthesis using an Assume-guarantee Approachp. 229
10.1 Introductionp. 230
10.2 Plant Hybrid Modelp. 232
10.3 Idle Speed Control Designp. 234
10.4 Closed-loop System Behavior Verificationp. 237
10.5 Conclusionsp. 242
10.6 Referencesp. 243
11 Fault Diagnosis of Switched Nonlinear Dynamical Systems with Application to a Diesel Injection Systemp. 245
11.1 Introductionp. 246
11.2 Discrete-event Behaviour of Switched Nonlinear Systemsp. 249
11.3 Requirements on Models Used for Diagnosisp. 251
11.4 Consistency-based Diagnosisp. 252
11.5 Representation of Quantised Systems by means of Automatap. 254
11.6 A Diagnostic Algorithm for Quantised Systemsp. 256
11.7 Automotive Application: Fault Diagnosis of a Power Stagep. 257
11.8 Conclusionsp. 260
11.9 Referencesp. 260
12 Modelling the Dynamic Behaviour of Three-way Catalytic Converters during the Warm-up Phasep. 263
12.1 Motivationsp. 264
12.2 Basics of the TWCp. 265
12.3 A Two-time-scale Infinite-adsorption Model of TWCp. 268
12.4 Machine Learning for Reaction Kineticsp. 275
12.5 A Phenomenological Model of TWCp. 278
12.6 Conclusionsp. 283
12.A Appendix-Mathematical Reduction Procedurep. 283
13 Control of Gasoline Direct Injection Engines using Torque Feedback: A Simulation Studyp. 289
13.1 Introductionp. 290
13.2 GDI Enginesp. 291
13.3 The GDI Benchmarkp. 292
13.4 The GDI Engine Modelp. 293
13.5 Core Control Strategiesp. 296
13.6 Controller Designsp. 300
13.7 Core Controller Resultsp. 307
13.8 A Complete Engine Management Systemp. 309
13.9 Full Benchmark Results and Comparisonsp. 312
13.10 Torque Estimation and Sensingp. 314
13.11 Conclusionsp. 316
13.12 Referencesp. 317
14 Closed-loop Combustion Control of HCCI Enginesp. 321
14.1 Homogeneous Charge Compression Ignition (HCCI)p. 322
14.2 Closed-loop Control of Ignition Timingp. 324
14.3 Closed-Loop Combustion Control of HCCI Enginesp. 326
14.4 Conclusion and Discussionp. 332
14.5 Referencesp. 332
15 Approximations of Maximal Controlled Safe Sets for Hybrid Systemsp. 335
15.1 Introductionp. 336
15.2 Definition and Properties of Controlled Safe Setsp. 336
15.3 Inner Approximations of the Maximal Controlled Invariant Setp. 339
15.4 An Example of Applicationp. 345
15.5 Conclusionsp. 348
15.6 Referencesp. 348
16 Hamiltonian Formulation of Bond Graphsp. 351
16.1 Introductionp. 352
16.2 Bond Graph Modelsp. 352
16.3 Dirac Structuresp. 354
16.4 Geometric Formulation of a Bond Graphsp. 355
16.5 Well-posedness and Equation Suitable for Numerical Simulationp. 358
16.6 Index of Systemp. 364
16.7 Examplep. 366
16.8 Conclusionp. 371
16.9 Referencesp. 371
17 Stability Analysis of Hybrid Systems -A Gearbox Applicationp. 373
17.1 Introductionp. 374
17.2 Application and Hybrid Modelp. 375
17.3 Exponential Stabilityp. 378
17.4 Linear Matrix Inequalitiesp. 380
17.5 Stability of the Gearbox Applicationp. 385
17.6 Conclusionsp. 387
17.7 Referencesp. 387
18 On the Existence and Uniqueness of Solution Trajectories to Hybrid Dynamical Systemsp. 391
18.1 Introductionp. 392
18.2 Model Classesp. 393
18.3 Solution Conceptsp. 396
18.4 Well-posedness Notionsp. 399
18.5 Well-posedness of Hybrid Automatap. 400
18.6 Well-posedness of Multi-modal Linear Systemsp. 403
18.7 Complementarity Systemsp. 405
18.8 Differential Equations with Discontinuous Right Hand Sidesp. 413
18.9 Summaryp. 419
18.10 Referencesp. 419
Author Listp. 423
Author Indexp. 429
Subject Indexp. 435